

Editorial

Mind the Gap: Bridging Guideline Recommendations and Real-World Practice in Heart Failure Management

So Ree Kim MD, PhD, and Dong-Hyuk Cho MD, PhD

Division of Cardiology, Department of Internal Medicine, Korea University Medicine, Korea University Anam Hospital, Seoul, Korea

OPEN ACCESS

Received: Jan 5, 2025

Revised: Jan 5, 2025

Accepted: Jan 5, 2025

Published online: Jan 13, 2025

Correspondence to

Dong-Hyuk Cho, MD, PhD

Division of Cardiology, Department of Internal Medicine, Korea University Medicine, Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Korea.

Email: why012@gmail.com

Copyright © 2025. Korean Society of Heart Failure

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (<https://creativecommons.org/licenses/by-nc/4.0/>) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

- ▶ See the article “Worsening Heart Failure and Medication Use in HFrEF: A Finnish Retrospective Registry Study and Patient Survey” in volume 7 on page 6.

Patients with worsening heart failure with reduced ejection fraction (HFrEF) face approximately 40% annual risk of heart failure (HF)-related rehospitalization.¹⁾ This repeated hospitalization creates a vicious cycle, increasing the burden of myocardial and renal damage and ultimately leading to cardiovascular mortality.²⁾ To break this cycle and reduce HF-related hospitalization, current guidelines strongly recommend implementing four essential medications: renin-angiotensin system (RAS) inhibitors, beta-blockers, mineralocorticoid receptor antagonists (MRA), and sodium-glucose cotransporter-2 (SGLT2) inhibitors.³⁾ However, significant barriers—physician-related, patient-related, and treatment-related—continue to impede optimal guideline-directed medical therapy (GDMT) implementation.⁴⁾

The evolution of GDMT implementation in Korea provides valuable insights into this challenge. The Korean Acute Heart Failure (KorAHF) registry (2011–2014) reported that while RAS inhibitor usage reached 78%, the use of beta-blockers and MRA remained below 60%.⁵⁾ More recent data from Korean Heart Failure III (KorHF III) (2018–2022) showed improvement with RAS inhibitors at 81%, beta-blockers at 76%, MRA at 65%, and SGLT2 inhibitors at 20%.⁶⁾ Further emphasizing the importance of medication adherence, a recent real-world analysis using Korean National Health Insurance claim data demonstrated that improved patient adherence to angiotensin receptor-neprilysin inhibitors was associated with better clinical outcomes compared to traditional RAS inhibitors.⁷⁾ Despite these encouraging trends in both implementation and adherence, a substantial gap persists between guideline recommendations and real-world practice.

In this context, the recent Finnish real-world registry study by Vesikansa et al.⁸⁾ offers crucial evidence regarding GDMT implementation. Among 570 HFrEF patients studied between 2013 and 2019, 23% experienced worsening HF events within one year, associated with increased mortality and reduced quality of life as measured by EQ-5D-5L. The study reported high initial medication use rates for RAS inhibitors (85%) and beta-blockers (90%), though MRA usage was notably lower at 44% during the first follow-up year. Importantly, medication adherence, defined as the proportion of purchased versus prescribed medications, significantly impacted outcomes: adherence of $\geq 60\%$ was associated with a 0.59-fold risk of worsening HF events compared to adherence $< 60\%$.

Comparison of Finnish and Korean registries reveals interesting differences. While the use of RAS inhibitors is similar to recent KorHF III data, the Finnish cohort showed higher beta-blocker utilization but markedly lower MRA use (44% versus 65%). The underutilization of MRA, a medication capable of reducing mortality risk by 30% in HFrEF patients, likely reflects concerns about chronic kidney disease and hyperkalemia.³ However, several factors suggest potential for improvement: MRA is an essential drug in GDMT sequencing, concurrent SGLT2 inhibitor use may mitigate hyperkalemia risk, and trials with emerging non-steroidal MRAs such as finerenone report lower discontinuation rates due to hyperkalemia.^{9,10}

The path forward requires a multi-faceted approach to improving both GDMT implementation and medication adherence. Evidence suggests that interventions during the critical transitional period after HF-related hospitalization can enhance outcomes. These interventions include structured discharge protocols, comprehensive patient education programs, and technological solutions such as digital health monitoring systems.¹¹ Furthermore, multidisciplinary approaches involving clinical pharmacists and systematic changes in healthcare policy and insurance coverage have shown promise.¹¹

In an era where we have unprecedented therapeutic options for HF management, our focus must shift from drug development to optimization of implementation. The evidence from both Finnish and Korean registries underscores that closing the gap between guidelines and practice requires attention to both physician implementation and patient adherence. Success in this endeavor could transform our ability to break the cycle of HF-related hospitalization and improve patient outcomes.

ORCID IDs

So Ree Kim

<https://orcid.org/0000-0002-3164-3258>

Dong-Hyuk Cho

<https://orcid.org/0000-0001-8480-9082>

Conflict of Interest

The authors have no financial conflicts of interest.

Author Contributions

Conceptualization: Kim SR, Cho DH; Investigation: Cho DH; Project administration: Cho DH; Writing - original draft: Cho DH; Writing - review & editing: Cho DH.

REFERENCES

1. Greene SJ, Butler J, Fonarow GC. Contextualizing risk among patients with heart failure. *JAMA* 2021;326:2261-2. [PUBMED](#) | [CROSSREF](#)
2. McMurray JJ, Stewart S. The burden of heart failure. *Eur Heart J Suppl* 2002;4:D50-8. [CROSSREF](#)
3. Youn JC, Kim D, Cho JY, et al. Korean Society of Heart Failure guidelines for the management of heart failure: treatment. *Int J Heart Fail* 2023;5:66-81. [PUBMED](#) | [CROSSREF](#)
4. Averbuch T, Greene SJ, Van Spall HGC. Guideline-recommended therapy following hospitalization for heart failure: understanding the gaps, navigating the barriers. *JACC Heart Fail* 2023;11:1333-6. [PUBMED](#) | [CROSSREF](#)
5. Lee SE, Lee HY, Cho HJ, et al. Clinical characteristics and outcome of acute heart failure in Korea: results from the Korean Acute Heart Failure Registry (KorAHF). *Korean Circ J* 2017;47:341-53. [PUBMED](#) | [CROSSREF](#)
6. Yoon M, Kim EJ, Han SW, et al. The third nationwide Korean Heart Failure III registry (KorHF III): the study design paper. *Int J Heart Fail* 2024;6:70-5. [PUBMED](#) | [CROSSREF](#)
7. Cho DH, Choi J, Youn JC, et al. Angiotensin receptor-neprilisin inhibitor adherence and outcomes in heart failure with reduced ejection fraction. *ESC Heart Fail*. 2024 [Epub ahead of print]. [PUBMED](#) | [CROSSREF](#)
8. Vesikansa A, Mehtälä J, Smith S, et al. Worsening heart failure and medication use in HFrEF: a Finnish retrospective registry study and patient survey. *Int J Heart Fail* 2025;7:6-18. [CROSSREF](#)
9. Shen L, Jhund PS, Docherty KF, et al. Accelerated and personalized therapy for heart failure with reduced ejection fraction. *Eur Heart J* 2022;43:2573-87. [PUBMED](#) | [CROSSREF](#)
10. Beldhuis IE, Voors AA, Tromp J. Rapid uptitration: what's the evidence? *Eur J Heart Fail* 2023;25:223-5. [PUBMED](#) | [CROSSREF](#)
11. Albert NM, Barnason S, Deswal A, et al. Transitions of care in heart failure: a scientific statement from the American Heart Association. *Circ Heart Fail* 2015;8:384-409. [PUBMED](#) | [CROSSREF](#)