Seamless Patient Care, with an IV Catheter that Lasts

BD Nexiva™
Closed IV Catheter System

Longer dwell times can reduce painful restarts.

Let’s admit it. Few people look forward to having an IV catheter placed. Patients don’t like it. Clinicians don’t enjoy it. And all that is compounded when a catheter fails or has to be replaced.

Use of the BD Nexiva™ Closed IV Catheter System enables longer dwell times and clinically indicated catheter replacement.¹ A 2014 clinical study demonstrated that BD Nexiva™ catheters had a median dwell time of 144 hours for catheters in place ≥24 hours.¹ The same study showed that longer dwell times of closed systems led to a cost reduction of approximately $1M/year/1,000 beds compared to an open system.¹ That’s good for you and for your patients.

To order or learn about all the ways BD is caring for you and your patients, visit bd.com/INS today or call (888) 237-2762.

¹ Compared to 96 hours with an open system.

BD, BD Logo and BD Nexiva are trademarks of Becton, Dickinson and Company.
© 2015 BD MSS0932 (12/15)
INFUSION THERAPY

STANDARDS OF PRACTICE

Developed by
Lisa Gorski, MS, RN, HHCNS-BC, CRNI®, FAAN
Lynn Hadaway, MEd, RN-BC, CRNI®
Mary E. Hagle, PhD, RN-BC, FAAN
Mary McGoldrick, MS, RN, CRNI®
Marsha Orr, MS, RN
Darcy Doellman, MSN, RN, CRNI®, VA-BC

REVISED 2016

315 Norwood Park South, Norwood, MA 02062
www.ins1.org
Infusion Therapy Standards of Practice Reviewers

Jeanette Adams, PhD, RN, ACNS-BC, CRNI®
Steve Bierman, MD
Daphne Broadhurst, BScN, RN, CVAA®
Wes Getnarowski, MD
Vineet Chopra, MD, MSc
Michael Cohen, RPh, MS, ScD(hon), DPS(hon), FASHP
Ann Corrigan, MS, BSN, RN, CRNI®
Lynn Czaplewski, MS, RN, ACNS-BC, CRNI®, AOCNS®
Julie DeLisle, MSN, RN, OCN®
Michelle Devries, MPH, CIC
Loretta Dorn, MSN, RN, CRNI®
Kimberly Duff, BSN, RN
Cheryl Dumont, PhD, RN, CRNI®
Beth Fabian, BA, RN, CRNI®
Stephanie Fedorinchik, BSN, RN, VA-BC
Michelle Fox, BSN, RN
Marie Frazier, MSN, RN, CRNI®
Claudia Freitag, PhD
Doreen Gendreau, MSN, MS, CNS, RN-BC, CWCN, DAPWCA
Lynn Gettrust, MSN, RN
Connie Girgenti, BSNc, RN, VA-BC
Sheila Hale, BSN, RN, CRNI®, VA-BC
Dora Hallock, MSN, RN, CRNI®, OCN®, CHPN
Max Holder, BSN, RN, CEN, CRNI®, VA-BC
Pamela Jacobs, MHA, BSN, RN, CRNI®, OCN®
James Joseph, MPH, BSN, RN, CRNI®, VA-BC
Matthias Kahl
Pat Kienle, RPh, MPA, FASHP
Melissa Leone, BSN, RN
Michelle Mandrack, MSN, RN
Alicia Mares, BSN, RN, CRNI®
Britt Meyer, MSN, RN, CRNI®, VA-BC, NE-BC
Crystal Miller, MA, BSN, RN, CRNI®
Diana Montez, BSN, RN
Tina Morgan, BSN, RN
Russ Nassof, Esq.
Barb Nickel, APRN-CNS, CRNI®, CCRN
Shawn O’Connell, MS, RN
Susan Paparella, MSN, RN
Roxanne Perucca, MSN, RN, CRNI®
Ann Plohal, PhD, APRN, ACNS-BC, CRNI®
Kathy Puglise, MSN/ED, RN, CRNI®
Vicky Reith, MS, RN, CNE, CEN, APRN-BC
Claire Rickard, PhD, RN
Robin Huneke Rosenberg, MA, RN-BC, CRNI®, VA-BC
Diane Rutkowski, BSN, RN, CRNI®
Laura Rutledge, MN, RN, CRNI®
Oefia Santiago, BSN, RN, CRNI®
Liz Sharpe, DNP, ARNP, NNP-BC, VA-BC
Marvin Siegel, RN, CRNI®
Marc Stranz, PharmD
Tim Vanderveen, PharmD, MS
Cora Vizcarra, MBA, BSN, RN, CRNI®, VA-BC
Paula Foiw Washesky, MBA, RD, LDN
Steve Weber
Sharon Weinstein, MS, RN, CRNI®, CSP, FAAN, FACW
Marcia Wise, RN, VA-BC
Cheryl Wozniak
Mary Zugcic, MS, RN, ACNS-BS, CRNI®
The *Journal of Infusion Nursing*, the official publication of the Infusion Nurses Society (INS), seeks to promote excellence in infusion nursing by presenting new research, clinical reviews, case studies, and professional development information relevant to the practice of infusion therapy. Articles selected for publication represent the broad scope of the infusion specialty and draw on the expertise of all health care providers who participate in the delivery of infusion.

CRNI is a registered trademark of the Infusion Nurses Certification Corporation.
Contents

Note: The “S” in page numbers denotes supplement issue and does not refer to a specific standard.

<table>
<thead>
<tr>
<th>Page</th>
<th>Section Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Foreword</td>
</tr>
<tr>
<td>S3</td>
<td>About the Standards of Practice Committee</td>
</tr>
<tr>
<td>S5</td>
<td>Preface</td>
</tr>
<tr>
<td>S6</td>
<td>A Message from BD Medical</td>
</tr>
<tr>
<td>S7</td>
<td>Acknowledgments</td>
</tr>
<tr>
<td>S8</td>
<td>Methodology for Developing the Standards of Practice</td>
</tr>
<tr>
<td>S9</td>
<td>Strength of the Body of Evidence</td>
</tr>
<tr>
<td>S10</td>
<td>STANDARDS OF PRACTICE</td>
</tr>
<tr>
<td>S11</td>
<td>SECTION ONE: INFUSION THERAPY PRACTICE</td>
</tr>
<tr>
<td>S12</td>
<td>1. Patient Care</td>
</tr>
<tr>
<td>S13</td>
<td>2. Special Patient Populations</td>
</tr>
<tr>
<td>S14</td>
<td>3. Scope of Practice</td>
</tr>
<tr>
<td>S15</td>
<td>4. Infusion Team</td>
</tr>
<tr>
<td>S16</td>
<td>5. Competency Assessment and Validation</td>
</tr>
<tr>
<td>S17</td>
<td>6. Quality Improvement</td>
</tr>
<tr>
<td>S18</td>
<td>7. Evidence-Based Practice and Research</td>
</tr>
<tr>
<td>S19</td>
<td>8. Patient Education</td>
</tr>
<tr>
<td>S20</td>
<td>9. Informed Consent</td>
</tr>
<tr>
<td>S21</td>
<td>10. Documentation in the Medical Record</td>
</tr>
<tr>
<td>S22</td>
<td>SECTION TWO: PATIENT AND CLINICIST SAFETY</td>
</tr>
<tr>
<td>S23</td>
<td>11. Adverse and Serious Adverse Events</td>
</tr>
<tr>
<td>S24</td>
<td>12. Product Evaluation, Integrity, and Defect Reporting</td>
</tr>
<tr>
<td>S25</td>
<td>13. Medication Verification</td>
</tr>
<tr>
<td>S26</td>
<td>14. Latex Sensitivity or Allergy</td>
</tr>
<tr>
<td>S27</td>
<td>15. Hazardous Drugs and Waste</td>
</tr>
<tr>
<td>S28</td>
<td>SECTION THREE: INFECTION PREVENTION AND CONTROL</td>
</tr>
<tr>
<td>S29</td>
<td>16. Hand Hygiene</td>
</tr>
<tr>
<td>S30</td>
<td>17. Compounding and Preparation of Parenteral Solutions and Medications</td>
</tr>
<tr>
<td>S31</td>
<td>18. Medical Waste and Sharps Safety</td>
</tr>
<tr>
<td>S32</td>
<td>19. Standard Precautions</td>
</tr>
<tr>
<td>S33</td>
<td>20. Transmission-Based Precautions</td>
</tr>
<tr>
<td>S34</td>
<td>21. Disinfection of Durable Medical Equipment</td>
</tr>
<tr>
<td>S35</td>
<td>SECTION FOUR: INFUSION EQUIPMENT</td>
</tr>
<tr>
<td>S36</td>
<td>22. Vascular Visualization</td>
</tr>
<tr>
<td>S37</td>
<td>23. Central Vascular Access Device (CVAD) Tip Location</td>
</tr>
<tr>
<td>S38</td>
<td>24. Flow-Control Devices</td>
</tr>
<tr>
<td>S39</td>
<td>25. Blood and Fluid Warming</td>
</tr>
<tr>
<td>S40</td>
<td>SECTION FIVE: VASCULAR ACCESS DEVICE (VAD) SELECTION AND PLACEMENT</td>
</tr>
<tr>
<td>S42</td>
<td>I. Short Peripheral Catheters</td>
</tr>
<tr>
<td>S43</td>
<td>II. Midline Catheters</td>
</tr>
<tr>
<td>S44</td>
<td>III. Central Vascular Access Devices (CVADs) (Nontunneled, Tunneled, Implanted Ports)</td>
</tr>
<tr>
<td>S45</td>
<td>IV. Arterial Catheters</td>
</tr>
<tr>
<td>S46</td>
<td>27. Site Selection</td>
</tr>
<tr>
<td>S47</td>
<td>I. Peripheral Venous Access via Short Peripheral Catheters</td>
</tr>
<tr>
<td>S48</td>
<td>II. Peripheral Venous Access via Midline Catheters</td>
</tr>
<tr>
<td>S49</td>
<td>III. Central Venous Access via Peripherally Inserted Central Catheters</td>
</tr>
<tr>
<td>S50</td>
<td>IV. Central Venous Access via Nontunneled Central Vascular Access Devices (CVADs)</td>
</tr>
<tr>
<td>S51</td>
<td>V. Central Venous Access via Tunneled Central Vascular Access Devices (CVADs) and Implanted Ports</td>
</tr>
<tr>
<td>S52</td>
<td>VI. Peripheral Arterial Access</td>
</tr>
<tr>
<td>S53</td>
<td>VII. External Jugular Vein Access</td>
</tr>
<tr>
<td>S54</td>
<td>VIII. Umbilical Catheters</td>
</tr>
<tr>
<td>S55</td>
<td>IX. Apheresis Catheters</td>
</tr>
<tr>
<td>S56</td>
<td>X. Local Anesthesia for Vascular Access Device (VAD) Placement and Access</td>
</tr>
<tr>
<td>S57</td>
<td>XI. Vascular Access Site Preparation and Device Placement</td>
</tr>
<tr>
<td>S58</td>
<td>SECTION SIX: VASCULAR ACCESS DEVICE (VAD) MANAGEMENT</td>
</tr>
<tr>
<td>S59</td>
<td>34. Needleless Connectors</td>
</tr>
<tr>
<td>S60</td>
<td>35. Filtration</td>
</tr>
<tr>
<td>S61</td>
<td>36. Add-on Devices</td>
</tr>
<tr>
<td>S62</td>
<td>37. Vascular Access Device (VAD) Stabilization</td>
</tr>
<tr>
<td>S63</td>
<td>38. Joint Stabilization</td>
</tr>
<tr>
<td>S64</td>
<td>39. Site Protection</td>
</tr>
</tbody>
</table>
The Journal of Infusion Nursing is a member benefit of the Infusion Nurses Society. INS is a professional association dedicated to enhancing infusion practices that will improve patient outcomes. Through its many member benefits, INS offers access to the latest infusion research, technology, and education. For more information about the benefits of INS membership, visit www.ins1.org.

Note: The “S” in page numbers denotes supplement issue and does not refer to a specific standard.

Contents

40. Flushing and Locking S77
41. Vascular Access Device (VAD) Assessment, Care, and Dressing Changes S81
42. Administration Set Change S84
 I. General S84
 II. Primary and Secondary Continuous Infusions S84
 III. Primary Intermittent Infusions S84
 IV. Parenteral Nutrition S85
 V. Propofol Infusions S85
 VI. Blood and Blood Components S85
 VII. Hemodynamic and Arterial Pressure Monitoring S85
43. Phlebotomy S85
 I. General S86
 II. Blood Sampling via Direct Venipuncture S86
 III. Blood Sampling via a Vascular Access Device S87
44. Vascular Access Device (VAD) Removal S91
 I. Short Peripheral and Midline Catheters S91
 II. Nontunneled Central Vascular Access Devices (CVADs) S91

III. Surgically Placed CVADs: Tunneled Cuffed/Implanted Ports S92
IV. Arterial Catheters S93

SECTION SEVEN: VASCULAR ACCESS DEVICE (VAD)-RELATED COMPLICATIONS

45. Phlebitis S95
46. Infiltration and Extravasation S98
47. Nerve Injuries S102
48. Central Vascular Access Device (CVAD) Occlusion S104
49. Infection S106
50. Air Embolism S108
51. Catheter Damage (Emboliolism, Repair, Exchange) S109
 I. General S109
 II. Catheter Embolism S110
 III. Catheter Repair S110
 IV. Catheter Exchange S110
52. Central Vascular Access Device (CVAD)-Associated Venous Thrombosis S112
53. Central Vascular Access Device (CVAD) Malposition S114

SECTION EIGHT: OTHER INFUSION DEVICES

54. Intraspinal Access Devices S118
55. Intravenous (IV) Access Devices S120
56. Continuous Subcutaneous Infusion and Access Devices S122

SECTION NINE: INFUSION THERAPIES

57. Parenteral Medication and Solution Administration S125
58. Antineoplastic Therapy S127
59. Biologic Therapy S129
60. Patient-Controlled Analgesia S131
61. Parenteral Nutrition S133
62. Transfusion Therapy S135
63. Moderate Sedation/Analgesia Using Intravenous Infusion S137
64. Therapeutic Phlebotomy S138

Appendix A. Infusion Team Definition S140
Appendix B. Illustrations S141
Glossary S146
Index S156

Articles that appear in the Journal of Infusion Nursing are selected by a process of double-blind peer review. Articles are reviewed by three or more members of the Editorial Review Board or other selected experts. INS retains final approval on all articles published in this journal. INS is not responsible for any statements made or opinions expressed herein. INS does not endorse or recommend any product or service discussed or advertised in this publication. Data and information developed by the authors of specific articles are for informational and educational purposes, and are not intended for application without independent, sustaining investigation on the part of potential users.
FOREWORD

These are exciting times in the field of infusion practice. Never before has there been as much interest, technology, evidence, or cross-disciplinary collaboration in the field as there is today. Whether it’s research that informs the safety of a particular vascular access device, guidance for when a device may be appropriate for use, or in-depth reviews of how best to prevent complications—the knowledge, data, and wisdom in our specialty are brimming. For infusion and vascular clinicians all over the world, there has never been a better moment to be on the front lines of patient care.

Yet, this progress does not come without a price, for with these times also comes great responsibility. For example, our patients have never been more complex in terms of their vascular access needs. Unlike times past, a dizzying array of devices, designs, and technology to meet nuanced needs (e.g., power injection-capable midline catheters) or fill key niches (ultrasound-guided devices for patients with difficult access) are now available. The very health care system within which we all operate has transformed—improving in many ways, but also becoming more fractured and misaligned in others. As patients transition through the labyrinth of outpatient, hospital, and post-acute care settings, the imperative to do what’s right in their vascular access voyage has perhaps never been more urgent than it is today.

In this whirlwind of change, clinicians are expected to not only master the insertion, care, and management of vascular access devices but to also inform clinical decisions regarding device choice and venous access route. Although such opportunities present a unique step forward for the field, they also introduce many new and unexpected challenges. For example, what should one do when limited evidence exists to guide clinical decision making? When available data do not support current practice, how should one approach the patient or provider so as to prevent harm? How may one learn, master, and implement the evidence to enact change in her or his facility? And relatedly, what practices are associated with improved outcomes, and which are relics of times past? In the endless quest to improve the care and quality of infusion practice, knowing what we don’t know has become more important than ever before.

Highlighting how fortunate we have been to have the Infusion Therapy Standards of Practice serve as the bedrock of our field for so many years is not hyperbole. Rather, the Standards represents the best of our specialty: a tome within which excellence, expectations, and enigmas are not only defined but also primed and supported by available data and strength of the evidence. Whether the purpose lies in informing patient care, legal proceedings, or personal edification and growth, no document is more versatile, time-tested, or valuable in the field of infusion practice. As a reviewer and contributor to this 2016 update, I am pleased to say the exulted tradition of the Standards continues. With new and improved sections on special patient populations, the definition and role of infusion teams, vascular visualization technologies, and catheter tip location, the 2016 Standards incorporates and assimilates the many advances in our field within a single comprehensive document. Not only have new criteria for practice been added but substantial improvements to the key domains of infection prevention, phlebotomy, and device complications have been included.
These significant enhancements reflect the growth in our field and the ever-changing expectations of the public in infusion care. The new *Standards* is thus not merely recommended, but *required* reading for any clinician interested in infusion or vascular therapy.

As a physician researcher dedicated to improving the safety of patients who require vascular access and infusion-based therapies, the *Standards* has informed the work that I do, the questions I ask, and the clinical care I provide. Quite simply put, there is nothing else like it. This edition continues to provide us with critical answers to the many important questions, conundrums, and challenges we face today. I urge you all to read, evaluate, and adapt the recommendations within this document to your care and decision making. Your patients, practice, and society will thank you for it.

Vineet Chopra, MD, MSc
Ann Arbor VA Medical Center and
the University of Michigan Health System
October 2015
ABOUT THE STANDARDS OF PRACTICE COMMITTEE

Lisa Gorski, MS, RN, HHCNS-BC, CRNI®, FAAN—Chair
Clinical Nurse Specialist, Wheaton Franciscan Home Health & Hospice, Milwaukee, WI
Ms. Gorski is a former INS president (2007-2008) who served on the INS Standards of Practice Committee in 2006 and chaired the 2011 committee. She is the author of more than 50 journal articles and has authored several books on the topic of infusion therapy. She is a frequent speaker, both nationally and internationally, on standards development, home health care, and infusion therapy.

Lynn Hadaway, MEd, RN-BC, CRNI®
President, Lynn Hadaway Associates, Inc, Atlanta, GA
Ms. Hadaway has more than 40 years of experience as an infusion nurse and is internationally known as a consultant and educator. She is currently serving as the chair for the Infusion Nurses Certification Corporation (INCC) Board of Directors and for the Infusion Team Task Force. She served as a committee member for the revision of the 2006 and 2011 Standards of Practice. She has authored more than 75 journal articles and several textbook chapters on infusion therapy. Ms. Hadaway holds board certifications in nursing professional development and infusion nursing.

Mary E. Hagle, PhD, RN-BC, FAAN
Nurse Scientist, Clement J. Zablocki VA Medical Center and University of Wisconsin-Milwaukee College of Nursing, Milwaukee, WI
Dr. Hagle joined the Standards of Practice Committee for the 2011 edition and returned for this updated version, refining the “Strength of the Body of Evidence” document after 5 years’ use and serving as a reference point for the quality of evidence. With 15 years’ experience as a researcher and more than 20 years as a clinical nurse specialist in academic and community medical centers, she has worked with patients and nurses in acute, ambulatory, and long-term care settings. Focusing on vascular access device management and prevention of adverse events, Dr. Hagle is a mentor for research and quality improvement teams, a leader for translating evidence into practice, and a clinical investigator.

Mary McGoldrick, MS, RN, CRNI®
Home Care and Hospice Consultant, Home Health Systems, Inc, Saint Simons Island, GA
Ms. McGoldrick began her home care career more than 35 years ago, and since that time she has served in a myriad of home care clinical, management, and executive-level positions, including 12 years as a home care and hospice surveyor for The Joint Commission (TJC). She is a frequent speaker on the topic of infection prevention in home care and hospice and has authored several books, articles, chapters, and manuals.
Marsha Orr, MS, RN
Distance Education Faculty Liaison and Full-time Lecturer, California State University (CSUF) School of Nursing (SON), Fullerton, CA
Ms. Orr is a full-time faculty member at CSUF and acts as a resource person to SON faculty in the area of using technology for teaching and for principles of online learning. She is an entrepreneur and consultant for home infusion nursing and home medical equipment and is a home accreditation surveyor for these areas. Her specialty practice areas include infusion therapy, vascular access, and nutrition support. She is a past board member and nursing committee chair for the American Society for Parenteral and Enteral Nutrition.

Darcy Doellman, MSN, RN, CRNI®, VA-BC
Clinical Manager, Vascular Access Team at Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
Ms. Doellman’s work over the past 30 years has included short peripheral catheter and peripherally inserted central catheter insertions, central line troubleshooting, education, publications, and research in the neonatal and pediatric population. She has certification in vascular access and infusion therapy.

STANDARDS OF PRACTICE COMMITTEE
CONFLICT OF INTEREST DISCLOSURES
The authors have completed and submitted a form for disclosure of potential conflicts of interest. Lisa Gorski reported relationships with ivWatch, BD, 3M, and Covidien; Lynn Hadaway reported relationships with 3M, BD, Terumo, Excelsior, Ivera, B Braun, Baxter, Covidien, DEKA, Discrub, SplashCap, Velano Vascular, VATA, West Pharmaceuticals, Elcam, Christie Medical, and Bard Access; Mary Hagle, Mary McGoldrick, and Marsha Orr reported no relationships; and Darcy Doellman reported relationships with Arrow International, Hospira, and Genentech.

The content is the responsibility of the authors alone and does not necessarily reflect the views or policies of the Department of Veterans Affairs or the United States government, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. government.

PREFACE

Recognized as the premier organization for the specialty practice of infusion nursing, the Infusion Nurses Society (INS) understands the significance the Infusion Therapy Standards of Practice (the Standards) holds in relation to the delivery of safe patient care. Developing and disseminating Standards is one of the pillars of INS’ mission. Infusion therapy is administered to all patient populations in all practice settings, all the more reason to ensure the Standards are applied to one’s clinical practice. It provides a framework to guide safe practice to ensure the best patient outcomes. There is an expectation that all clinicians are competent in their practice.

With more published research, advances in science, and innovation in technology, it’s imperative that the Standards is relevant to the clinician’s practice. Therefore, INS is committed to revising the document every 5 years. This seventh edition cites 350 more references than the sixth edition of the Standards (2011), a testament to the advancing science of infusion therapy. The rankings of the strength of the body of evidence have also shifted in this edition. In 2011, there were 3.8% of Level I rankings, the highest rating. In this revision, that ranking has grown to 5.8%, evidence that there is more robust research with consistent findings in the literature to support the practice. In contrast, the percentage of Level V rankings, the lowest rating, was 67% in 2011 and has decreased to 46% in this document. With more published data and research adding to the science of the practice, the distribution of rankings has changed based on the nature and robustness of the research. As we’ve seen over time, more strong evidence has provided clinicians with information and data that can justify existing practice or lead to a change in practice.

A major change in this edition of the Standards is its title. Infusion therapy does not “belong” to one group of clinicians, but it is the responsibility of any clinician who is involved in the practice. Recognizing infusion care goes beyond nursing, the title has been changed to the Infusion Therapy Standards of Practice. This change aligns with the interprofessional approach that is being implemented in health care today.

In this edition, new standards have been added, while other sections have been expanded to offer more guidance to clinicians. The format remains unchanged with practice criteria and relevant references listed after each set of standards.

INS’ focus has never changed. We still keep in mind that our patients are the reason we do what we do. We want to ensure we’re providing the safe, quality infusion care that our patients deserve. As INS continues to “set the standards for infusion care,” the Infusion Therapy Standards of Practice is an invaluable guide for all clinicians who are responsible for their patients’ infusion care.
A MESSAGE FROM BD MEDICAL

We at BD feel honored to support the *Infusion Therapy Standards of Practice* revision for the fifth time since 1998, as part of our commitment to helping more efficiently deliver health care and improve patient outcomes. With a long history of providing global education and training on best practices, we award grants for education and research to promote innovative solutions in infusion therapy and across the care continuum.

We applaud the Infusion Nurses Society (INS) for striving to keep the *Standards of Practice* current, relevant, and evidence based, helping millions of clinicians provide quality infusion therapy to their patients. We look forward to working with INS in the future while helping improve infusion therapy around the world.

Alicia Mares, BSN, RN, CRNI®
Clinical Marketing Manager
BD Medical

Richard Ji
Vice President, Catheter Solutions
BD Medical
ACKNOWLEDGMENTS

INS recognizes the significance the Infusion Therapy Standards of Practice has to clinical practice and to all clinicians involved in the delivery of safe infusion care. Without the following dedicated individuals and their passion for quality patient care, the seventh edition of the Standards would not have been possible.

First, I want to recognize and thank the Standards of Practice Committee: Lisa Gorski, chair; Lynn Hadaway; Mary Hagle; Mary McGoldrick; Marsha Orr; and Darcy Doellman. They spent countless hours researching and critically analyzing the evidence, and writing, reviewing, and revising all the Standards. Not only is the depth of their expertise in clinical practice, research, and infusion-related knowledge unsurpassed, but their commitment to this important work is also exceptional.

Thanks go to the reviewers of the Standards. From INS members and volunteer leaders, to physicians, pharmacists, legal experts, health care clinicians, and industry partners, their thoughtful reviews and feedback contributed to the global perspective and interprofessional approach of the document.

I want to thank the INS Board of Directors for supporting the efforts of the Standards of Practice Committee during the revision process. I am grateful to the INS staff for the assistance they offered in ensuring that the publication was completed.

I also want to recognize BD Medical for their continuous support over the years of the Standards of Practice revisions. INS thanks them for the educational grant that helped fund this project.

Lastly, I want to thank our INS members. It is your passion and commitment to providing quality patient care that motivates us to continue to support the infusion specialty practice.

Mary Alexander, MA, RN, CRNI®, CAE, FAAN
Chief Executive Officer, INS
METHODOLOGY FOR DEVELOPING THE STANDARDS OF PRACTICE

Role of the Standards of Practice Committee

The Standards of Practice Committee brought together a group of professional nurses with a wealth of clinical knowledge and expertise in all the domains of infusion therapy. They initially met to review and agree on the evidence rating scale and to discuss methods and sources of searching for evidence. They also agreed on how to evaluate types of evidence. Throughout the Standards review and revision process, the committee met regularly by phone, reviewed each standard in detail, and came to consensus on the final strength of the body of evidence rating for the final draft of the Infusion Therapy Standards of Practice. This draft then was sent to over 90 interdisciplinary reviewers who are experts in the field, comprising all aspects of infusion therapy. Sixty reviewers provided in excess of 790 comments, suggestions, references, and questions. The committee addressed each comment and made revisions to the standards, seeking additional evidence as needed. Each standard had a final review by the committee for agreement on the content, evidence, recommendation, and rating.

The standards are written for clinicians of multiple disciplines with various educational backgrounds, training, certification, and licensing, including licensed independent practitioners, because infusion therapy may be provided by any one of these individuals. The premise is that patients deserve infusion therapy based on the best available evidence, irrespective of the discipline of the clinician who provides that therapy while operating within her or his scope of practice.

Searching for Best Evidence

A literature search was conducted for each of the standards of practice using key words and subject headings related to the standard. Searches were limited to English-language, peer-reviewed journals published between 2009 and July 2015. Databases included, but were not limited to, Cochrane Library, Cumulative Index to Nursing and Allied Health Literature (CINAHL), MEDLINE, PubMed, and Web of Science. The references of retrieved articles were reviewed for relevant literature.

Additional sources of evidence included, but were not limited to, the Web sites of professional organizations, manufacturers, pharmaceutical organizations, and the United States Pharmacopeia (USP). US sites included the US Department of Health and Human Services for national centers, such as the Agency for Healthcare Research and Quality (AHRQ), the Centers for Disease Control and Prevention (CDC), and the US Food and Drug Administration (FDA); and the US Department of Labor (eg, Occupational Safety and Health Administration [OSHA]). Classic papers were included as needed. On occasion, textbooks served as sources of evidence when clinical research and scholarship are widely accepted, such as for anatomy and physiology. Because standards of practice are written for all health care settings and all populations, evidence was included for each of these areas as available.

Evaluating Evidence

Each item of evidence is evaluated from many perspectives, and the highest, most robust evidence relating to the standards of practice is used. Research evidence is preferred over nonresearch evidence. For research evidence, the study design is the initial means for ranking. Other aspects of evaluation of quality include sufficient sample size based on a power analysis, appropriate statistical analysis, examination of the negative cases, and consideration of threats to internal and external validity.

Research on research, such as meta-analyses and systematic reviews, is the highest level of evidence. Only specific study designs are acceptable for a meta-analysis, and with its statistical analysis, this is the most robust type of evidence. Single studies with strong research designs, such as randomized controlled trials (RCTs), form the basis for research on research or a strong body of evidence when there are several RCTs with similar findings. Other research designs are needed as well for a developing area of science and often before an RCT can be conducted. A necessary and foundational study for learning about a question or a population is the descriptive research project, but because of its lack of research controls, it is ranked at a low level of evidence for clinical practice.
Last, nonresearch is often the only available evidence. Nonresearch includes quality improvement projects, clinical articles, case reports, or position papers, as well as manufacturers’ instructions for use and consensus guidelines. Nonresearch evidence can be extremely valuable for certain aspects of practice when it is unethical to conduct research on that question or research is impractical. Many times, quality improvements lead to a research question and subsequent study.

Rating the Strength of the Body of Evidence

In 2011, the Infusion Nurses Society Standards of Practice Committee developed the rating scale for the strength of the body of evidence to provide guidance for clinicians when implementing standards of practice. This guidance can reflect a range of evidence, from a preponderance of evidence and specific clinician actions highly recommended, to minimal evidence and actions based on organizational preference and/or clinician judgment.

The rating scale for the strength of the body of evidence ranges from the highest rating of “I,” representing a meta-analysis and other research on research to the lowest level of “V.” For a standard of practice with a single item of evidence, such as a meta-analysis with its accepted methods, the body of evidence is within the meta-analysis. The strength of this body of evidence is I. When studies are cited within the larger work of a meta-analysis or systematic review, the individual studies are not cited separately. However, for large research-based guidelines, the level of evidence may vary based on the strength of the research the guideline uses for a particular recommendation.

There is also a rating for anatomy and physiology, which may be based on anatomy textbooks as well as fully analyzed case studies. This is used for recommendations to stop an unsafe action, such as for preventing air embolism through body positioning. It may also be used to prevent harm to the patient, such as avoiding venipuncture around dense areas of nerves. On rare occasions, there is a lack of literature or very low levels of evidence with conflicting findings. In these instances, the Standards of Practice Committee reviewed the evidence, discussed and agreed to practice criteria, and as a committee decided on a rating of V, Committee Consensus. This rating was used in less than 2% of the practice criteria.

The last rating is the Regulatory level. The committee was aware that many practices are mandated by regulatory agencies that could penalize clinicians and/or organizations if the regulations are not followed. OSHA is an example of such an agency that has regulations governing certain aspects of infusion therapy.

Practice Criteria Recommendations

When there is a large body of evidence based on robust research with consistent findings, the strength of the body of evidence reflects a high rating, such as a I or II, and the practice criteria recommendation is strong. There is also the occasion when there is a systematic review, which is a robust research design, but the findings are inconclusive. Thus, there is a strong body of evidence indicating a high rating for the type of evidence cited, but the evidence and conclusions are undetermined. In this instance, the practice criteria recommendation is lower, reflected in the use of the term consider, and the clinician is advised to use this evidence along with her or his expertise and clinical judgment.

Practice criteria also serve as guidance for aspects of infusion therapy when there is little more than expert opinion. Often, practice questions are raised in publications, at conferences, or through online professional forums. For a few practice criteria, the Standards of Practice Committee provided a consensus recommendation that may guide a novice clinician for safe care without harm. In reviewing the practice criteria and the evidence ratings, the clinician may identify some practices with uncertain or low levels of evidence. This may stimulate areas of needed research in infusion therapy or quality improvement projects to validate practice.

The Standards of Practice document is reviewed and revised based on the best evidence every 5 years. With the rating scale, projects can be stimulated during the intervening years to address some of the gaps in evidence for practice recommendations. However, the Infusion Nurses Society and the Standards of Practice Committee are committed to bringing research-based critical changes for practice to clinicians through a variety of dissemination strategies in the time between Standards of Practice publication dates.
Strength of the Body of Evidence

<table>
<thead>
<tr>
<th>Strength of the Body of Evidence</th>
<th>Evidence Description*</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Meta-analysis, systematic literature review, guideline based on randomized controlled trials (RCTs), or at least 3 well-designed RCTs.</td>
</tr>
<tr>
<td>I A/P</td>
<td>Evidence from anatomy, physiology, and pathophysiology references as understood at the time of writing.</td>
</tr>
<tr>
<td>II</td>
<td>Two well-designed RCTs, 2 or more multicenter, well-designed clinical trials without randomization, or systematic literature review of varied prospective study designs.</td>
</tr>
<tr>
<td>III</td>
<td>One well-designed RCT, several well-designed clinical trials without randomization, or several studies with quasi-experimental designs focused on the same question. Includes 2 or more well-designed laboratory studies.</td>
</tr>
<tr>
<td>IV</td>
<td>Well-designed quasi-experimental study, case-control study, cohort study, correlational study, time series study, systematic literature review of descriptive and qualitative studies, or narrative literature review, psychometric study. Includes 1 well-designed laboratory study.</td>
</tr>
<tr>
<td>V</td>
<td>Clinical article, clinical/professional book, consensus report, case report, guideline based on consensus, descriptive study, well-designed quality improvement project, theoretical basis, recommendations by accrediting bodies and professional organizations, or manufacturer directions for use for products or services. Includes standard of practice that is generally accepted but does not have a research basis (eg, patient identification). May also be noted as Committee Consensus, although rarely used.</td>
</tr>
<tr>
<td>Regulatory</td>
<td>Regulatory regulations and other criteria set by agencies with the ability to impose consequences, such as the AABB, Centers for Medicare & Medicaid Services (CMS), Occupational Safety and Health Administration (OSHA), and state Boards of Nursing.</td>
</tr>
</tbody>
</table>

*Sufficient sample size is needed with preference for power analysis adding to the strength of evidence.
1. PATIENT CARE

Standard

1.1 The Infusion Therapy Standards of Practice is applicable to any patient care setting in which vascular access devices (VADs) are placed and/or managed and where infusion therapies are administered.

1.2 Infusion therapy is provided in accordance with laws, rules, and regulations promulgated by federal and state regulatory and accrediting bodies in all patient care settings.

1.3 Infusion therapy practice is established in organizational policies, procedures, practice guidelines, and/or standardized written protocols/orders that describe the acceptable course of action, including performance and accountability, and provide a basis for clinical decision making.

1.4 Infusion therapy is provided with attention to patient safety and quality. Care is individualized, collaborative, culturally sensitive, and age appropriate.

1.5 Ethical principles are used as a foundation for decision making. The clinician acts as a patient advocate; maintains patient confidentiality, safety, and security; and respects, promotes, and preserves human autonomy, dignity, rights, and diversity.

1.6 Clinician decisions related to infusion therapy practice, including device and/or product selection, are not subject to commercial or other conflicts of interest.

2. SPECIAL PATIENT POPULATIONS

Standard

2.1 To ensure patient safety, the clinician providing infusion therapy for special populations (neonatal, pediatric, pregnant, and older adult populations)* is competent in clinical management of such populations, including knowledge of anatomical and physiological differences, safety considerations, implications for vascular access device (VAD) planning and management, and infusion administration.

Practice Criteria

A. Provide care to special populations, which include neonatal, pediatric, pregnant, and older adult patients, that is individualized, collaborative, and age appropriate.1-5 (V)

B. Provide infusion therapy to special patient populations with attention to:

1. Anatomic characteristics and their effect on physical assessment, VAD planning, site selection, insertion procedures, and use of specialized infusion-related equipment, including care and maintenance practices during infusion therapy.3,6-9 (V)

2. Safety and environmental considerations for infusion therapy in all care settings (eg, acute care, ambulatory, long-term care facility, home care).3,5,6,8,10 (V)

C. Considerations for neonatal and pediatric patients:

1. Recognize physiologic characteristics and effect on drug and nutrient selection; administration set selection (eg, free of Di[2-ethylhexyl] phthalate [DEHP]); dosage and volume limitations with reference to age, height, weight, or body surface area; pharmacologic actions, interactions, side effects, and adverse effects; monitoring parameters; and response to infusion therapy.2,8-12 (V)

2. Provide education to the mother regarding the potential impact and risks/benefits of any medication use during lactation.13 (V)

3. Provide care with attention to growth and developmental level; include nonpharmacological measures for promoting comfort and reducing pain and fears associated with infusion therapy procedures.2,14,15 (V)

4. Assess for psychosocial and socioeconomic considerations that may affect the plan for infusion therapy.2 (V)

5. Interact with parents, other family members, or surrogates as members of the patient’s health care team, including provision of patient education.
REFERENCES

19. Nuthalapaty FS, Beck MM, Mabie WC. Complications of central vascular access device (CVAD) complications (eg, infection and thrombosis) during pregnancy. 19-21 (IV)

3. SCOPE OF PRACTICE

Standard

3.1 The role, responsibilities, and accountability for each type of clinician involved with infusion therapy delivery, according to the applicable regulatory boards, are clearly defined in organizational policy.

3.2 Clinicians involved with infusion therapy practice within the boundaries of their legal scope of practice.

3.3 Clinicians delivering any type of infusion therapy and vascular access device (VAD) insertion, use, maintenance, and removal are qualified and competent to perform the identified functions.

3.4 Members of the health care team collaborate to achieve the universal goals of safe, effective, and appropriate infusion therapy.

3.5 Infusion therapy tasks are delegated by the registered nurse (RN) to unlicensed assistive personnel (UAP) in accordance with rules and regulations promulgated by the state’s Board of Nursing and within the policies and procedures of the organization. The RN and the organization are responsible and accountable for the tasks delegated to UAP and licensed practical/vocational nurses (LPN/LVNs).

Practice Criteria

A. Know the scope of practice for one’s health care profession or occupation and provide patient care within this legal framework.

1. Recognize that Nurse Practice Acts differ among jurisdictions (ie, state, province, country).
2. For other professions, know the designated scope of practice as outlined by the applicable regulatory agency and/or professional organization (eg, American Society of Radiologic Technologists [ASRT], American Association for Respiratory Care [AARC]).
3. Know the boundaries of practice as established by organizational policies when there is an absence of a legal scope of practice (eg, UAP).1-3 (V)

B. Recognize the overlap between professional groups and that no single profession can claim exclusive ownership of any skill, activity, or task.3,4 (V)

C. For nursing personnel, make scope of practice decisions according to the method used by the state Board of Nursing. A standardized decision tree for determining scope of practice is preferred; however, other methods may be used. Frequent application of the decision process may be required due to increasing types of infusion therapies and technologies, expansion of practice into professions other than nursing, and delivery of infusion therapy in acute and alternative health care settings.5 (Regulatory)

D. **Nursing Personnel**

1. Provide infusion therapy based on the components of the nursing process and principles of delegation and supervision using a holistic, patient-centered approach to care.6,6 (V)
2. Collaborate with members of the health care team toward the universal goal of safe, effective, and appropriate infusion therapy.7 (IV)
3. Execute independent nursing strategies related to infusion therapy using decision-making and critical thinking skills.2 (V)
4. Advocate for identification and removal of barriers to allow practice to the full extent of licensure.8,9 (V)
5. **Registered Nurse (RN)**
 a. Complete an organized educational program on infusion therapy due to the lack and/or inconsistency of infusion therapy in basic nursing curricula,10 (V)
 b. Do not accept assignments and tasks when one concludes that she or he is inadequately prepared to perform the assignment or task (refer to Standard 5, *Competency Assessment and Validation*).
 c. Develop the necessary skills for delegation based on rules and regulations articulated by state Boards of Nursing.3,11,12 (V, Regulatory)
 d. Delegate tasks, activities, and components of care after determination of competency to perform the specific task. Match the staff member’s skill to the specific needs of the patient and family.3,11-14 (V, Regulatory)
 e. Do not delegate any aspect of the nursing process, although specific components of care may be delegated.3,11,12 (V)
 f. Use critical thinking and nursing judgment to apply the Five Rights of Delegation, including the right task, under the right circumstances, to the right person, with the right direction and communication, and under the right supervision and evaluation.3 (V)
 g. Delegate tasks that frequently occur; can be performed with an established order of steps; require little or no modification for each patient; are performed with a predictable outcome; do not require assessment or professional judgment; and do not endanger a patient’s life or well-being.3 (V)
 h. Ensure that delegated tasks are completed in compliance with organizational policies and procedures.11 (V)
i. In settings without an administrative nursing structure (eg, physician office or clinic), written policies identify which professional can delegate and to whom they can delegate. The delegating individual is accountable for the task performance.11 (V)

j. Recognize that accepting an assignment to supervise a task (eg, peripheral catheter insertion, accessing an implanted port) delegated by another professional (eg, licensed independent practitioner [LIP]) is outside the guidelines for delegation. Accepting the assignment to supervise such tasks requires that the RN is competent with the task, is able to intervene if needed, and has the opportunity and proximity to monitor performance.11,12 (V)

6. Licensed Practical/Vocational Nurse (LPN/LVN)
 a. Complete an organized educational program, including supervised clinical practice on infusion therapy, as required for LPN/LVNs in many states. In states without such requirements, completion of an infusion therapy educational program is recommended prior to performing infusion therapy procedures (refer to Standard 5, Competency Assessment and Validation).
 b. Practice analysis for LPN/LVNs includes venipuncture for blood sampling and insertion and removal of peripheral catheters, maintenance of central vascular access devices (CVADs), and administration of intravenous (IV) medications by the piggyback method. The majority of states permit LPN/LVNs to administer IV medications through CVADs, while 10 states allowed this activity through delegation, and 5 states prohibited this practice. No regulatory agency includes insertion of midline catheters or CVADs within the scope of practice for LPN/LVNs.15,16 (V)
 c. Perform infusion-related tasks under the supervision of an RN or LIP with appropriate infusion therapy knowledge and skills.11 (V)
 d. Adhere to the state Board of Nursing’s rules and regulations regarding the authority to delegate by LPN/LVN as this varies greatly between states.1 (V)

7. Infusion Nurse Specialist (Certified Registered Nurse Infusion [CRNI])
 a. Enhance professional growth and empowerment by earning board certification to become an infusion nurse specialist (ie, CRNI).17,18 (V)
 b. Advocate for expansion of professional practice to the full extent of licensure and board certification including, but not limited to, CVAD insertion and determination of CVAD tip location on imaging modalities.19-23 (V)
 c. Participate in quality improvement activities and clinical research in infusion therapy.24 (V)
 d. Serve as the primary resource to guide policy and procedure development of infusion therapy derived from best evidence.18,24 (V)
 e. Serve as educator, leader, manager, and consultant on issues related to infusion therapy.18,24 (V)

8. Advanced Practice Registered Nurse (APRN)
 a. Know the status of APRNs as LIPs based on legal requirements for physician direction or supervision. APRNs who are LIPs have the legal authority to prescribe infusion therapy. APRNs may perform surgical procedures for insertion and removal of vascular access devices with documented competence.25 (V, Regulatory)
 b. Provide leadership in education, consulting, and research related to infusion therapy according to the needs of the employing organization and/or patient populations served.26-29 (V)
 c. Advocate for expansion of professional practice to the full extent of education, certification, and licensure.30 (V)

E. Unlicensed Assistive Personnel (UAP)

1. Nursing assistive personnel (NAP) is a category of UAP, includes many job titles, has no standardized educational requirements, and does not have a regulated scope of practice. An unofficial UAP scope of practice task list is taken from the Code of Federal Regulations (42 CFR § 483), which applies to care for residents of nursing facilities. Basic nursing care tasks are included, although some states have expanded this list. No tasks related to VAD insertion, care, or maintenance or to the administration of any IV fluid or medications are included on this list.31,32 (V, Regulatory)

2. Managing equipment and supplies, gathering data, and assisting licensed clinicians with invasive procedures are infusion-related tasks that may be assigned to NAP.31 (V)

3. Apply existing rules or regulations, if any, from specific state Boards of Nursing pertaining to delegation of infusion-related tasks to NAP and the supervision of their performance. There is much variation among states regarding what is allowed for UAP dialysis technicians to administer through CVADs.15 (V)

4. Medical Assistants (MAs) are a different category of UAP, primarily employed in medical offices, although they may be employed in a variety of positions in acute care hospitals. Regulations vary greatly among states, and very few identify any form of scope of practice.33,34 (V)

5. MAs function in assistive roles to physicians by performing administrative and clinical tasks. The state medical board regulates delegation of tasks from physicians to MAs with tremendous variations among states.33 (V)
6. A structured nursing department with responsibility and accountability for the action of MAs is not typically found in medical offices. Following delegation from the physician, the licensed nurse may be expected to supervise task performance. The individual licensed nurse is required to obtain clarification from the delegating physician about the role of each professional, especially who will hold accountability for the outcome of the delegated tasks.

7. Infusion therapy-related tasks may be delegated to MAs depending upon the state regulations and after the MA completes education and competency validation.

F. Therapist/Technologist/Technician
1. These groups of clinicians have educational preparation from a variety of schools/colleges (ie, associate’s and bachelor’s degrees). Individuals hold a state license or certification from a professional organization or both as required by the state board regulating their practice.
2. Each individual practices within the identified scope of practice and has documented competency for each task, skill, or activity performed.
3. Radiologic Technologist
 a. Holds a state license and/or certification from a national credentialing board (eg, American Registry of Radiologic Technologists [ARRT]).
 b. Unlicensed and/or uncertified individuals and those holding only an institutional license working in the radiology department should not have the responsibility for venipuncture or administration of any IV medication.
 c. There are numerous practice areas for radiologic technologists including, but not limited to, cardiovascular and interventional, computed tomography, magnetic resonance, and nuclear medicine.
 d. Basic techniques of venipuncture, administration of diagnostic contrast agents and/or IV medications, and appropriate delivery of patient care during medication administration are components of the curriculum for each practice area as established by ASRT and other radiology organizations.
 e. ASRT-issued advisory opinions that peripheral venipuncture, parenteral injection of contrast media and other medications, and access to existing VADs are within the scope of practice when an LIP is immediately available to ensure proper diagnosis and treatment of adverse events.

f. Adhere to recommendations, position statements, standards of practice, and other guidance documents from ASRT, American College of Radiology (ACR), and other appropriate regulatory agencies.

g. Know the proper use of all flow-control devices used in radiology including, but not limited to, power injectors.

G. Respiratory Care Practitioner

1. Holds a license from the regulatory agency in the jurisdiction (state, province, country) and/or certification from the national certifying board (ie, National Board for Respiratory Care). Two levels of certification are available: Certified Respiratory Therapist (CRT) and Registered Respiratory Therapist (RRT).

2. Adhere to regulations on scope of practice questions as determined by the regulatory agency within each jurisdiction. A few states have addressed the issue of peripherally inserted central catheter and other CVAD insertion by respiratory therapists, either positively or negatively; however, most states have nothing on record regarding this practice question.

3. Arterial puncture and obtaining arterial blood samples are addressed by AARC; there are no national documents addressing any other aspect of infusion therapy or vascular access by respiratory therapists.

H. Paramedic

1. Holds a license from the regulatory agency in the jurisdiction (state, province, country), and/or certification from the national certifying board, and is credentialed (authorized) by a local emergency services medical director to perform the skills or role.

2. Recognize that emergency medical personnel have historically functioned in a prehospital setting; however, they are now employed in a variety of settings such as hospital emergency departments, hospital units, physician offices, and urgent care settings. Note any alterations in the role when employed in nontraditional settings as there may be prohibitions for certain activities.

3. Two levels of emergency medical services personnel perform infusion therapy:
 a. Advanced Emergency Medical Technicians may insert peripheral venous catheters and intraosseous...
devices and administer IV fluids and 50% dextrose for hypoglycemia. b. Paramedics may insert peripheral venous catheters and intravascular devices, access indwelling VADs, administer IV medications by infusion, and monitor blood and blood products.16 (V)

REFERENCES

Note: All electronic references in this section were accessed September 15, 2015.

4. INFUSION TEAM

Standard

4.1 The infusion team is structured through its scope of service to meet patient and organizational needs for safe, effective, and high-quality infusion therapy.

Practice Criteria

A. Assign vascular access device (VAD) insertion and/or VAD management and surveillance only to individuals and/or teams with infusion therapy education, training, and validated competency.1-7 (I)

B. Recognize that:

1. A designated infusion team that is accountable for inserting short peripheral catheters increases the success rate for cannulation on the first attempt and decreases hospital-acquired bloodstream infections, local site infections, occlusions, and accidental removals.6-12 (V)

2. A designated infusion team that is accountable for managing VADs, including daily assessment, dressing changes, and/or access, decreases catheter-associated bloodstream infections and related costs, phlebitis and infiltration, and increases patient satisfaction.7-13-20 (IV)

3. An infusion team is a resource for infusion therapy product evaluation, education, and standardized evidence-based practices.7-9,11,13,15-17,21-23 (V)

C. Collect, monitor, and report quality outcome and process data for an infusion team scope of service to evaluate team effectiveness, patient safety, adherence to best practices, and patient satisfaction, including, but not limited to, first-attempt success on cannulation and time-to-VAD insertion once ordered. In collaboration with the infection prevention team, collect, monitor, and report quality outcome data for VAD dwell time, reasons for removal, and complications such as phlebitis, infiltration/extravasation, thrombosis, and catheter-associated bloodstream infection.8-11,15-17,21-23,24-26-29 (IV)

D. Consider establishing or maintaining an infusion team for central vascular access device (CVAD) insertion, management, and removal.14,15,17,24,25,27-33 (IV)

REFERENCES

Note: All electronic references in this section were accessed September 15, 2015.

5. COMPETENCY ASSESSMENT AND VALIDATION

Standard

5.1 As a method of public protection to ensure patient safety, the clinician is competent in the safe delivery of infusion therapy and vascular access device (VAD) insertion and/or management within her or his scope of practice.

5.2 The clinician is responsible and accountable for attaining and maintaining competence with infusion therapy administration and VAD insertion and/or management within her or his scope of practice.

5.3 Competency assessment and validation is performed initially and on an ongoing basis.

5.4 Competency validation is documented in accordance with organizational policy.

Practice Criteria

A. Accept individual responsibility for becoming competent and maintaining continued clinical competence.

1. Competence goes beyond psychomotor skills and includes application of knowledge, critical thinking, and decision-making abilities.

2. Competency requires a commitment to lifelong learning, self-reflection, and professional ethics.1,2 (IV)

B. Use a standardized approach to competency assessment and validation across the health care system to accomplish the goal of consistent infusion practices.

1. Identify and develop competency assessment programs that empower clinicians for educational growth and staff development.

2. Link continuing competency assessment programs to meet patient needs and improve clinical outcomes.

3. Establish transparency in the process of assessing competency and the requirements for judging competency.

4. Collaborate with professional development staff.

5. Acknowledge the imbalance of power when a manager acts as the competency validator.1,5 (IV)

C. Validate clinician competence by documenting the knowledge, skills, behaviors, and ability to perform the assigned job.

1. Validate initial competency before providing patient care (eg, use of simulation, case studies, written tests), when the scope of practice changes, and with the introduction of new procedures, equipment, or technology.
2. Validate continuing competency on an ongoing periodic basis. Frequency of ongoing competency validation is determined by the organization based on the associated risk and known problems, concerns, and outcomes within the organization.²,⁶,⁷ (IV)

D. Identify procedures/skills/tasks for ongoing competency validation by using clinical outcome data; adverse events, serious safety events, and sentinel events; changing patient populations served; and patient satisfaction data.

1. Prioritize the specific tasks for competency assessment by the frequency of performing those tasks and the risks associated with the tasks. Low-frequency tasks are performed less often (eg, less than weekly). High-risk tasks include invasive procedures with the potential to be harmful or even life threatening to the patient. Problem-prone tasks include those that are documented to produce issues for the patient, staff, or organization.⁶,⁸ (V)

E. Perform a gap analysis to identify educational and/or performance needs for each group of clinicians based on their profession or occupation and their stage of development in their role (ie, novice, advanced beginner, competent, proficient, or expert).¹,⁷,⁹-¹³ (IV)

F. Employ multiple methods to deliver education (eg, lecture, reading materials, simulations, self-study), repeated over time and combined with outcome monitoring and feedback to increase their impact on professional behavior.⁹,¹⁴ (II)

G. Use evidence and national standards to establish competencies for clinicians providing infusion therapy. Achieving and maintaining board certification (ie, CRNI⁸) is one method for documenting continuing competence. Include the following aspects of infusion therapy as appropriate:

1. Technology and clinical application
2. Fluid and electrolyte balance
3. Pharmacology
4. Infection prevention
5. Special patient populations
6. Transfusion therapy
7. Antineoplastics and biologic therapy
8. Parenteral nutrition²,¹⁵,¹⁶ (IV)

H. Expansion of practice to include specialized skills (eg, central vascular access device [CVAD] insertion, antineoplastic administration) requires multiple components of initial competency assessment and validation including:

1. Evaluation of prior clinical experience related to the specialized skill to determine readiness to learn.
2. Obtaining the necessary knowledge and critical thinking.

3. Skill practice in a simulation lab with assistance from a qualified instructor.

4. Clinical performance with the procedure under supervision until an objective level of competency has been reached (ie, all steps performed successfully). There is no set number of times for performing a procedure that will ensure competency.¹⁷-²⁰ (IV)

I. Enhance the reliability of outcomes of competency assessment by using a combination of different measurement techniques:

1. Use self-assessment processes to promote self-efficacy and confidence levels.
2. Use written tests to assess knowledge.
3. Use clinical scenarios to assess critical thinking skills.
4. Assess psychomotor skills in a simulation laboratory using multiple methods. Peer evaluation and self-assessment of video-recorded performance reduces stress and anxiety and encourages confidence before observation by the assessor. These methods are beneficial for novice learners, for skills clinically performed on an infrequent basis, or when observation of performance in the work environment is not practical.
5. Observe performance of knowledge and skills in the work environment as the preferred method for invasive infusion therapy procedures.
6. Include professional activities, such as presentations at seminars and conferences, maintaining national board certification, publishing in a scholarly journal, conducting clinical research, and portfolio development.

7. Associate performance appraisals with competency assessment.²,¹⁵,²¹-²³ (IV)

J. Establish clear performance expectations for contracted clinician competencies (eg, VAD insertion):

1. Obtain documentation of competency for contracted clinicians.⁶,²⁴ (V)
2. Document compliance of contracted clinicians with the organization’s requirements for staff qualifications, personnel practices, and clinical policies and procedures.⁶,²⁴ (V)
3. Ensure supervision of contracted staff learning new procedures within the organization. (V, Committee Consensus)
4. Use a consistent process to manage contracted staff and monitor outcomes produced by contracted staff.⁶,²⁴ (V)

K. Do not perform invasive procedures (eg, venipuncture) on peers due to health risk and the physical and emotional stress created for the volunteer.²⁵,²⁶ (V)

L. Develop qualifications for the role of competency assessor.

1. The person assessing the performance of clinicians should be competent with the skill being assessed.
2. Assurers should provide services in an unbiased and objective manner.

3. Equalize the balance of power between the assessor and the clinician being assessed by emphasizing the educational aspects of competency assessment. Managers should not serve in the role of competency assessor as this could shift the focus to performance issues.3,27 (IV)

M. Validate performance using well-designed forms or checklists that focus on objective, measurable assessment of the actual performance. Data on the validity and reliability of specific forms are limited.

1. Include the following in a competency form or checklist: the competency statement, specific performance criteria statements, or critical behaviors; the method of demonstrating performance; the criteria for achieving success; and the signature of the assessor.5 (V)

2. Formats for the form include a simple met/unmet process, using a global rating scale (ie, Likert scale), or a detailed checklist of major and minor steps in the procedure/skill/task.28,29 (II)

3. There is no consensus on grading the individual’s performance, such as what percentage of performance constitutes competency or when remediation is required.28,29 (II)

N. Incorporate competency for specific patient populations based on age. Age-based competency will address needs by chronological, functional, or life-stage groups, including physical and psychological development needs and patient educational requirements.6 (V)

O. Facilitate culturally competent health care by identifying and addressing the needs of ethnically diverse patient populations and validating clinician competency to meet those needs. Cultural competency includes health care-related beliefs and values, prevalent diseases in populations served, religious practices, language and literacy issues, and family-based needs. There is no uniformity in defining cultural competency and no consensus on how to grade, implement, and evaluate cultural competency interventions.6,30 (IV)

REFERENCES

6. QUALITY IMPROVEMENT

Standard

6.1 The clinician participates in quality improvement activities advancing safety and excellence in infusion therapy.

6.2 Quality improvement programs include the surveillance, aggregation, analysis, and reporting of infection; infection prevention practices; morbidity and mortality rates associated with infections; and both infusion-related patient quality indicators and adverse events to identify areas for improvement.

Practice Criteria

A. Foster a just culture and individual accountability through a focus on improving systems and processes by clinicians and leaders.14(IV)

B. Participate regularly in quality improvement activities such as:

1. Using systematic methods and tools to guide activities such as Model for Improvement (Plan-Do-Check-Act), Lean Six Sigma, continuous quality improvement (CQI), root cause analysis (RCA), and Healthcare Failure Mode and Effect Analysis (HFMEA).

2. Identifying clinical quality indicators and their benchmarks, such as central line-associated bloodstream infection (CLABSI), catheter-related bloodstream infection (CR-BSI), reasons for removal of a vascular access device (VAD), or number of attempts for VAD insertion.

3. Collecting data, analyzing, and evaluating outcomes against benchmarks for areas of improvement.

4. Comparing outcomes to national databases.

5. Evaluating and reporting quality and safety indicators, outcomes, including near misses, errors, and adverse events to identify areas for improvement.

6. Recommending and implementing changes in structures or processes based on data.

7. Using cost analysis, cost-effectiveness, and other methods as indicated.

8. Minimizing and eliminating barriers to change and improvement.

9. Sharing improvements gained through these processes with other clinicians internally and externally.5-27 (II)

C. Analyze infusion therapy practice processes and outcomes to determine when remediation, additional education, or other performance improvement action is needed for clinician(s).28-32 (V)

D. Evaluate the incidence of CLABSI regularly by:

1. Using surveillance methods and definitions that are consistent and permit comparison to benchmark data as well as reviewing each case for root cause.

2. Comparing rates to historical internal data and external national rates (eg, National Healthcare Safety Network).

3. Reporting results regularly to clinicians and leadership.

4. Reporting as mandated by state and federal requirements to external quality initiatives or state programs.17,33-41 (II)

5. Using a standard formula:

\[
\text{Number of BSIs in patients with central lines} \times 1000 = \text{CLABSI Rate}
\]

\[
\text{Total number of central line days}
\]

E. Evaluate adverse events from peripheral catheters regularly for infiltration, phlebitis, and/or bloodstream infection in identified populations through incidence, point prevalence, reports from electronic medical records, or International Classification of Diseases (ICD) codes by:

1. Using surveillance methods and definitions that are consistent and permit comparison to benchmark data.42-49 (III)
2. Comparing rates to historical internal data and when possible to external national rates.\(^{42,44,46-48}\) (III)

3. Reporting results regularly to clinicians and leadership.\(^{2,42,44,47}\) (IV)

4. Monitor infiltration rates related to peripheral catheters in neonates and children less than 11 years of age considering a standard formula that is clinically feasible.\(^{45,46,49-53}\) (III)

\[
\text{Number of infiltration incidents} \times \frac{1000}{\text{Total number of peripheral catheter line days in neonates &/or children}} = \text{infiltration rate}
\]

\[
\text{Number of infiltration incidents} \times \frac{100}{\text{Total number of peripheral catheters in neonates &/or children}} = \% \text{ infiltration}
\]

5. Monitor phlebitis rates related to peripheral catheters using a consistent, standard, and clinically feasible calculation, which may be reported as a phlebitis rate based on point prevalence of peripheral short catheters.\(^{8,48,54-56}\) (III)

\[
\text{Number of phlebitis incidents} \times \frac{100}{\text{Total number of peripheral catheters}} = \% \text{ peripheral phlebitis}
\]

6. Consider monitoring bloodstream infection rates for peripheral catheters, or vascular catheter-associated infections (peripheral), regularly.\(^{43,57,58}\) (IV)

F. Analyze technology analytics, such as smart pumps and bar-code medication administration, for errors, overrides, and other alerts so that improvements may be considered.\(^{59,60}\) (V)

REFERENCES

Note: All electronic references in this section were accessed September 15, 2015.

REFERENCES

Note: All electronic references in this section were accessed September 15, 2015.

8. PATIENT EDUCATION

Standard

8.1 The clinician educates the patient, caregiver, and/or surrogate about the prescribed infusion therapy and plan of care including, but not limited to, purpose and expected outcome(s) and/or goals of treatment, infusion therapy administration, infusion device-related care, potential complications, or adverse effects associated with treatment or therapy, and risks and benefits.

8.2 Teaching methods and learning materials are congruent with the skills being taught, incorporate learning theory, and encompass patient and caregiver learning needs.

Practice Criteria

A. Develop an effective educational plan based on identified goals to ensure the safe delivery of infusion therapy and reduce the risk of infusion therapy-related complications:

1. Establish specific and measurable goals.
2. Engage the patient/caregiver/surrogate in the development of these goals.
3. Select effective ways to validate appropriate knowledge and skill acquisition for all aspects of infusion delivery that the patient/caregiver/surrogate will be performing.

B. Select teaching methods based on an assessment of age, developmental and cognitive level, health literacy, cultural influences, and language preference. Also assess additional factors affecting the patient’s, caregiver’s and/or surrogate’s readiness to learn, such as current stressors, sensory deficits, and functional limitations.

C. Use educational resources that are understandable and actionable. These elements include consideration of health literacy levels, cultural congruence, primary language, and instructional methods. Avoid medical jargon, and use simple terminology.

D. Evaluate patient/caregiver/surrogate learning outcomes with methods that directly measure knowledge, such as demonstration/return demonstration for psychomotor skills, verbal feedback for cognitive knowledge (teach-back), and reports of feelings and beliefs for the affective domain.

E. Educate patients/caregivers/surrogates about infusion therapy to include, but not limited to:

1. Proper care of the access device.
2. Precautions for preventing infection and other complications, including aseptic technique and hand hygiene.
3. Signs and symptoms to report, including those that may occur after the infusion device is removed and after the patient leaves the health care setting (e.g., signs of postinfusion phlebitis, fever) and how/where to report them.
4. For outpatients and those receiving home infusion therapy, additional education should also include:
 a. Safe storage, maintenance, and disposal of solutions, supplies, and equipment.
 b. Infusion administration as appropriate.
 c. Use and troubleshooting of the electronic infusion device (EID)/infusion system.
d. Signs and symptoms of adverse effects of the therapy prescribed.

e. Prevention of air and catheter embolism and management of the catheter if an embolism is suspected.

f. Prevention of catheter damage, assessment for catheter damage (eg, from scissors), and what immediate actions to take if catheter damage is found.

g. Living with an access device, including activity limitations and protecting the device while performing activities of daily living.23,17,20 (V)

F. Evaluate patient/caregiver/surrogate comprehension and performance at the beginning of infusion therapy and periodically thereafter at established intervals.1,2,5 (V)

REFERENCES

Note: All electronic references in this section were accessed September 15, 2015.

9. INFORMED CONSENT

Standard

9.1 Obtain informed consent for all invasive procedures and treatments in accordance with local or state laws and organizational policy.

9.2 Informed consent is required for human subject participation in research according to federal rules and regulations.

9.3 The clinician performing the invasive procedure (eg, central vascular access device [CVAD] insertion) facilitates the process and obtains informed consent.

9.4 The clinician confirms that the informed consent process is completed for the defined procedure or treatment.

9.5 The patient or surrogate has the right to accept or refuse treatment.

Practice Criteria

A. Recognize that obtaining informed consent is an educational process involving the patient in shared decision making.

1. The process begins with dialogue between the patient/surrogate and the licensed independent practitioner (LIP) or qualified clinician performing the procedure; however, other clinicians have a significant role in the complete process.
D. Facilitate the informed consent process by choosing

2. The process concludes with the patient/surrogate signing a consent document or providing verbal consent according to organizational policy (eg, via phone conversation).

3. Continued confirmation of informed consent may be necessary for ongoing treatments (eg, hemodialysis or antineoplastic administration).1-3 (IV)

B. Follow requirements for obtaining informed consent from the patient/surrogate as regulations vary between jurisdictions (ie, states, provinces, countries). Differences include documentation, the professional performing the consent process, procedures/treatments requiring informed consent, and variations in the legal approach to evaluation of informed consent. Recognize that there could be condition-based exceptions to requirements for informed consent (eg, emergency/life-threatening situations) and adhere to the organizational policy for managing these situations.1,2 (IV)

C. Ensure that the process for informed consent includes these required elements:

1. Consent is voluntarily given and is free from coercion or persuasion.

2. The patient/surrogate is capable of understanding relevant information, appreciates the situation and its consequences, and is able to make choices.

3. The patient/surrogate has received the necessary information to understand the procedure/treatment, its purpose, risks, potential benefits, alternative procedures/treatments, common complications, and potentially serious or irreversible risks.

4. The patient/surrogate comprehends the information and can apply it to her or his specific situation.

5. The decision is authorized by the patient/surrogate and documented on the signed form.2,3,7,8 (IV)

D. Facilitate the informed consent process by choosing learning methods most appropriate for the patient’s age and level of health literacy.

1. Provide educational materials and the consent document at a reading level between the fourth and sixth grades and in the patient’s primary language.

2. Provide information at the most appropriate time considering the effect of anxiety, pain, and other therapeutic interventions on the patient’s comprehension.

3. Provide a qualified medical interpreter for non-English-speaking patients and for those who cannot read their primary language.

4. Provide appropriate resources for patients/surrogates who have vision or hearing limitations.

5. Allow sufficient opportunity for the patient/surrogate to ask questions and receive answers.

6. Choose appropriate methods to deliver the information, including verbal and paper-based written information, videos, or computer-based materials.

7. Validate the patient’s/surrogate’s comprehension of the information by asking the patient/surrogate to recount or “teach-back” the proposed treatment or procedure. Clarify and/or reinforce information as needed.

8. When the patient/surrogate expresses confusion or has further questions, collaborate with the provider about the need for more dialogue.

9. Document the informed consent process by serving as a witness to the patient/surrogate signature on the informed consent document.2,3,7,8 (IV)

E. For research-informed consent, provide explanations and a consent document that is clear, concise, and an accurate representation of the research purpose(s). Use extended dialogue and simplified consent documents with a clear layout and text styling to improve the patient’s ability to understand. In addition to the standard components of informed consent, the research consent document includes additional components such as:

1. The anticipated length of participation in the research.

2. Identification of procedures that are experimental.

4. Compensation for participation, if any.

5. Availability of medical treatments if injury occurs.9-13 (I)

F. Recognize that photographs of patients may or may not require informed consent.

1. Unless the photograph is for treatment purposes, payment for services, or health care operations, written informed consent is required under Health Insurance Portability and Accountability Act (HIPAA) rules when the patient is identifiable by inclusion of the patient’s face or other identifiable features such as jewelry, tattoos, or other anatomically notable scars or lesions. This consent includes how the images will be obtained, managed, stored, and shared.

2. A photograph that does not identify the patient would not require informed consent under HIPAA rules; however, health care facilities may have policies that go beyond these rules.

3. Unidentifiable photographs have benefits for educational purposes; however, there are challenges with adequate security for storage and use and other legal issues such as copyright ownership.14,15 (IV)

G. Recognize cultural differences that may affect the process of informed consent. The foundation of informed consent is self-determination, which may not fit with cultures where medical treatment choices
are a family decision rather than an individual decision.5,6 (IV)
H. Assess patients with age-, trauma-, or disease-related alterations in cognitive capacity for their ability to consent by using tools to evaluate cognitive status or asking probing questions to evaluate language comprehension, memory, and ability to reason. When the patient does not have the necessary cognitive capacity, obtain informed consent from a surrogate.5,16 (V)
I. For neonatal, pediatric, and adolescent patients, verify that informed consent was obtained for the procedure/treatment from the parent or legal guardian. From the patient, verify assent (ie, agreement) to the procedure/treatment using language and learning methods appropriate for the age and/or cognitive stage of the individual. While there is lack of consensus over the age of assent, this is generally considered 7 years old or school age.17 (V)
J. Define circumstances (eg, emergent and time-sensitive situations) when exemption from obtaining informed consent is allowed. Document details of information provided, method of discussion (eg, telephone), to whom it was given, and the patient or surrogate response in the medical record.18,19 (V)

REFERENCES
Note: All electronic references in this section were accessed September 15, 2015.

10. DOCUMENTATION IN THE MEDICAL RECORD

Standard

10.1 Clinicians document their initial and ongoing assessments or collection of data, diagnosis or problem, intervention and monitoring, the patient’s response to that intervention, and plan of care for infusion therapy. Expected side effects and unexpected adverse events that occur, with actions taken and patient response, are documented.

10.2 Documentation contains accurate, complete, chronological, and objective information in the patient’s medical record regarding the patient’s infusion therapy and vascular access with the clinician’s name, licensure or credential to practice, date, and time.

10.3 Documentation is legible, timely, accessible to authorized personnel, and efficiently retrievable.

10.4 Documentation reflects the continuity, quality, and safety of care.

10.5 Documentation guidelines and the policies for confidentiality and privacy of the patient’s health care information and personal data are established in organizational policies, procedures, and/or practice guidelines, according to the scope of practice for individuals with specific licensure or credentials, standards
of care, accrediting bodies, and state and federal regulations.

Practice Criteria

A. Documentation includes, but is not limited to, the following:

1. **Patient, caregiver, or legally authorized representative's participation in, understanding of, and responses to therapy, interventions, and education.**

2. **Specific site preparation, infection prevention, and safety precautions taken, using a standardized tool for documenting adherence to recommended practices.**

3. **The type, length, and gauge/size of the vascular access device (VAD) inserted; the lot number for all central vascular access devices (CVADs) and implanted devices.**

4. **Date and time of insertion, number of attempts, functionality of device, local anesthetic (if used), and the insertion methodology, including visualization and guidance technologies.**

5. **Identification of the insertion site by anatomical descriptors, laterality, landmarks, or appropriately marked drawings.**

6. **For midline catheters and peripherally inserted central catheters (PICCs):**
 a. **External catheter length and length of catheter inserted.**
 b. **Arm circumference: before insertion of a PICC and when clinically indicated to assess the presence of edema and possible deep vein thrombosis (DVT).** Take this measurement 10 cm above the antecubital fossa; assess for the location and other characteristics such as pitting or nonpitting edema.

7. **Condition of the site, dressing, type of catheter stabilization, dressing change, site care, patient report of discomfort or any pain with each regular assessment of the access site, and patient report of changes related to the VAD or access site.**

8. **A standardized assessment, with photography as needed and in accordance with organizational policy, appropriate for the specific patient population (eg, age), for phlebitis, infiltration, and extravasation that allows for accurate and reliable assessment on initial identification and with each subsequent site assessment (see Standard 9, Informed Consent).**

9. **Type of therapy, drug, dose, rate, time, route, and method of administration; condition of the venipuncture or access site prior to and after infusion therapy.**

10. **Results of VAD functionality assessment including patency, absence of signs and symptoms of complications, lack of resistance when flushing, and presence of a blood return upon aspiration.**

11. **Type of equipment used for infusion therapy administration; depending on the setting, accountability for maintenance and replacement of tubing/cassettes as well as identification of caregiver or surrogate for patient support.**

12. **Pertinent problem or diagnosis, initial and ongoing assessment, and vital signs as appropriate; patient’s response to VAD insertion and therapy, including symptoms, side effects, or adverse events with related interventions; laboratory test results as appropriate; barriers to patient education or care; and evaluation of expected outcomes.**

13. **Regular assessment of the need for continuation of the VAD:**
 a. **Daily for acute inpatient settings.**
 b. **During regular assessment visits in other settings, such as in the home or a skilled nursing facility.**

14. **Upon removal: condition of site, condition of the catheter and length, reason for device removal, nursing interventions during removal, dressing applied, patient response, patient education, date/time of removal, and any necessary continuing management for complications.**

15. **If cultures are obtained, document source of culture(s).**

16. **When multiple VADs or catheter lumens are used, documentation should clearly indicate what solutions and medications are being infused through each device or lumen.**

B. **Documentation of all infusion therapy, clinicians’ actions, and patient responses should be completed in an electronic health record or other electronic health information system, if available, using standardized terminologies.**

1. **Electronic entries should reflect current patient status, even when an entry is pulled from another location in the medical record.**

2. **Standardized templates for documentation of required elements of care should be used but without limiting further description as needed.**

3. **The electronic medical record should capture data for quality improvement without additional documentation from clinicians.**
REFERENCES

Note: All electronic references in this section were accessed September 16, 2015.

Section Two: Patient and Clinician Safety

11. ADVERSE AND SERIOUS ADVERSE EVENTS

Standard

11.1 The clinician reports and documents adverse events or serious adverse events (sentinel events) associated with infusion therapy.

11.2 The science of safety, which includes human errors and system failures, along with reporting of adverse events and serious adverse events, is defined in organizational policies, procedures, and/or practice guidelines.

Practice Criteria

A. Report adverse events or serious adverse events (sentinel events), or the risk thereof (ie, “near misses”) associated with vascular access devices (VADs) and/or infusion products/devices and the administration of drugs and biologics, to the licensed independent practitioner (LIP) and appropriate department(s) (eg, risk management [RM], quality improvement) and in accordance with organizational policy.1-6 (V, Regulatory)

B. Report adverse events associated with drugs, biologics, and infusion devices/products to the US Food and Drug Administration (FDA) through the MedWatch reporting system and/or the Institute for Safe Medication Practices (ISMP). Reports to ISMP are confidentially shared with the FDA and, when applicable, to product vendors to inform them about pharmaceutical labeling, packaging, and nomenclature issues that may cause errors by their design (see Standard 13, Medication Verification).7,8 (V, Regulatory)

C. Use valid and reliable tools to identify and measure adverse events.2,9,10 (V)

D. Use a standard document developed by legal and risk management personnel to provide objective and specific facts about the adverse event or serious adverse event.4,5 (V)

E. Immediately investigate serious adverse events to ensure prompt action and improve safety. The process includes a root cause analysis (RCA) or other systematic investigation and analysis to improve quality and safety.1-6 (V)

1. Identify cause(s), describe the event, and implement specific strategies and/or actions for improvement that protects patients. An interprofessional approach focuses on systems issues, procedures, human resources, peer and/or clinical review, products/equipment, processes, and training gaps.1,6 (V)

2. The clinician actively participates in the development, implementation, and evaluation of the improvement plan.1,3,6 (V)

3. Consider using an RCA or other systemic investigation or analysis for complex, recurrent problems and for “near misses.”6 (V)

F. Improve safety within the organization:

1. Focus on fixing the system(s) and processes, rather than blaming the clinician.

2. Advocate for teamwork interventions, including training and education (eg, focus on communication, leadership); work redesign (eg, change interactions such as multidisciplinary rounds); and use of structured tools and protocols (eg, handoff communication tools and checklists).

3. Establish a strong “just culture” that continuously strengthens safety and creates an environment that raises the level of transparency, encourages reporting, empowers the clinician to identify and implement appropriate actions to prevent adverse events and near misses, and promotes quality patient outcomes (see Standard 6, Quality Improvement).1,2,4-6,11-17 (V)

G. Communicate unanticipated outcomes and lessons learned to organizational leadership and clinicians.1,2,4-6,11-18 (V)

H. Ensure responsible disclosure of errors to patients; promote interprofessional collaboration in planning...
and discussing information with the team responsible for disclosing information about the adverse event to the patient, caregiver, or surrogate.\(^3,19\) (V)

REFERENCES

Note: All electronic references in this section were accessed September 16, 2015.

11. Classen DC, Resar R, Griffith F. Global trigger tool shows that product integrity and functionality before, during, and after use as determined by verification of inspection or expiration date and visual inspection of the product.
12. If a product is expired, its integrity compromised, or found defective, the clinician removes it from patient use, labels it as expired or defective, and reports the product expiration or defect according to organizational policies and procedures.
G. Include the following information pursuant to US Food and Drug Administration Form 3500A when a product defect results in an adverse event:
1. Patient information including name, age or date of birth, gender, and weight.
2. Identification of occurrence, event, or product problem.
3. Outcomes attributed to the occurrence or event (eg, death or serious injury), defined as disability resulting in permanent impairment of a body function or permanent damage to a body structure, or injury or illness that requires intervention to prevent permanent impairment of a body structure or function.
4. Date of event.
5. Date of report by the initial reporter.
6. Description of event or problem, including a discussion of how the device was involved, nature of the problem, patient follow-up or required treatment, and any environmental conditions that may have influenced the event.
7. Description of relevant tests and laboratory data, including dates.
8. Description of other relevant patient history, including preexisting medical conditions.
9. Device information, including brand name; type of device; manufacturer name and address; expiration date; unique device identifier (UDI) that appears on the label; model number; catalog number; serial number; lot number or other identifying number; date of device implantation; date of device removal; and operator of the device (health professional, patient, lay user, other).
10. Whether the device was available for evaluation and whether it was returned to the manufacturer, purchase distributor, or other manufacturer.
11. Concomitant medications and therapy dates.

H. Use the following prevention strategies in product evaluation to improve safety and reduce preventable adverse events:
1. Identify patients or conditions associated with higher risk.
2. Facilitate optimal purchase decisions.
3. Enable early detection and intervention to address risk factors.

REFERENCES

Note: All electronic references in this section were accessed September 16, 2015.

13. MEDICATION VERIFICATION

Standard

13.1 Medications and infusion solutions are identified, compared against the medication order, and verified by reviewing the label for the name (brand and generic), dosage and concentration, beyond-use date, expiration date, sterility state, route of administration, frequency, rate of administration, and any other special instructions.

13.2 At least 2 patient identifiers are used to ensure accurate patient identification when administering medications.

Practice Criteria

A. Perform a medication reconciliation at each care transition and when a new medication(s) is ordered (eg, admission, transfers to different levels of care, discharge to new health care settings) to reduce the risk of medication errors, including omissions, duplications, dosing errors, and drug interactions.1,6 (IV)

B. Implement special safeguards to reduce the risk of medication errors with high-alert medications such as standardizing storage, preparation, and administration (eg, standard order sets); improving access to drug information; limiting access (stored securely, limited quantities); using supplementary labels and automated alerts; and using automated or independent double checks.7-11 (IV)

C. Perform an independent double check by 2 clinicians for the organization’s selected high-alert medications that pose the greatest risk of harm. Develop a standard process and educate staff in how to perform the double check.9-13 (IV)

D. Use technology, when available, to verify medications prior to administration. Analyze effectiveness and limitations related to technology through organizational quality improvement processes.

1. Use of bar-code technology is associated with decreased risk of medication errors and is increasingly common among acute care organizations, and there is emerging research supporting its use in long-term care settings. Studies have reported that errors still occur as staff may create “work-arounds” that bypass safety mechanisms with bar-code technology.14-19 (III)

2. Use of electronic infusion devices (EIDs) that include dose-error reduction software (“smart pumps”) is associated with reduced risk for infusion-related medication errors, including error interceptions (eg, wrong rate) and reduced adverse drug events. Failure to comply with appropriate use, overriding of alerts, and use of the wrong drug library contribute to the risks associated with smart pumps. Regular education and training and assessment of use are recommended for both routine users and new staff members.20 (II)

E. Use a list of confusing drug names (ie, look-alike, sound-alike) to implement safeguards to reduce the risk for medication errors such as using both generic and brand names; including purpose of medication on label; and changing the appearance of look-alike names by using US Food and Drug Administration (FDA)- and Institute for Safe Medication Practices (ISMP)-approved tall man (mixed case) lettering.21 (V)

F. Label medications that are prepared and not immediately administered (eg, perioperative, procedural settings) as soon as prepared with the medication name, strength, quantity, diluent/volume, expiration date, and preparer initials. Begin the administration within 1 hour after the start of the preparation or discard (see Standard 17, Compounding and Preparation of Parenteral Solutions and Medications).2,3,22-24 (V, Regulatory)

G. Discard and do not use any medication syringes that are unlabeled unless the medication is prepared at the patient’s bedside and immediately administered without a break in the process.2,3,22,24 (V)

H. Do not use color coding, color differentiation, or color matching as the sole cue for product or medication identification. Color coding can lead users to rely on the color coding rather than ensuring a clear understanding of which administration sets and catheters are connected.25 (IV)

I. Report adverse events associated with medicines and biologics to the appropriate department within the organization and to the FDA through the MedWatch reporting system and/or ISMP. Reports to ISMP are confidentially shared with the FDA and, when applicable, to product vendors to inform them about pharmaceutical labeling, packaging, and nomenclature issues that may cause errors by their design.24,26,27 (Regulatory)

REFERENCES

Note: All electronic references in this section were accessed September 16, 2015.

14. LATEX SENSITIVITY OR ALLERGY

Standard

14.1 Exposure to latex in the health care environment is minimized.

14.2 Latex-free personal protective equipment (PPE), patient care equipment, and supplies are provided to latex-sensitive or latex-allergic clinicians and patients and used during patient care.

Practice Criteria

A. Screen clinicians at the time of hire for a latex allergy.1-3 (V)

B. Use low-allergen, powder-free gloves, nitrile gloves, glove liners, or other similar alternatives, especially if sensitive or allergic to latex.1-3 (V)

C. Remove latex-containing products from the patient care setting to reduce the exposure to latex.1,3 (V)

D. Report the development of latex sensitivities or allergies to the employer. The employer will report allergic reactions to the Occupational Safety and Health Administration (OSHA) as required and report allergic events related to latex medical devices to the US Food and Drug Administration (FDA) MedWatch Program.3-5 (V, Regulatory)

E. Review the label on medical devices, equipment, and supplies prior to use for the presence of latex, which is a component of product labeling required by the FDA.5 (V)

F. Assess the patient for latex allergies. To prevent the inadvertent exposure of an infant to latex sensitization, assess the mother for known latex allergy. Document the findings in the patient’s medical record and communicate a positive screen for latex sensitivity or allergies to others involved in the patient’s care and

References:

incorporate into the patient’s plan of care. Educate the patient on how to avoid latex exposure.7 (V)

REFERENCES
Note: All electronic references in this section were accessed September 16, 2015.

15. HAZARDOUS DRUGS AND WASTE

Standard

15.1 Organizational policies and procedures address safe handling of hazardous drugs, appropriate use of personal protective equipment (PPE), exposure risk reduction, and safe handling of waste, including spills, in accordance with local, state, and federal regulations and manufacturers’ directions for use.

15.2 All hazardous waste is discarded in appropriate containers and disposed of according to local, state, and federal regulations.

Practice Criteria

A. Identify hazardous drugs used in the health care setting. The National Institute for Occupational Safety and Health (NIOSH) provides a list of antineoplastic and nonantineoplastic drugs that meet the definition of hazardous drugs, including those with safe handling guidance from the manufacturer. This list is periodically updated.

1. Additional resources used to evaluate the hazard potential of a drug include safety data sheets (SDSs); drug package inserts; Drugbank (http://drugbank.ca); DailyMed (http://dailymed.nlm.nih.gov/dailymed); International Agency for Research on Cancer (IARC) (http://www.iarc.fr); special health warnings from drug manufacturers; the US Food and Drug Administration (FDA) (http://www.fda.gov/drugs/default.htm); and other professional groups’ and organizations’ evidence-based recommendations.1,2 (V, Regulatory)

B. Provide education to clinicians who handle hazardous drugs and waste. Education should include toxicities associated with exposure, required precautions, and what types of PPE to wear to prevent exposure.3-5 (V, Regulatory)

1. While most hazardous drugs are antineoplastic agents, recognize that there are infusion drugs from other categories classified as hazardous. Furthermore, certain antineoplastic drugs are administered for noncancer indications. Clinicians in all settings who administer hazardous drugs should be provided appropriate PPE and engineering controls to reduce exposure (refer to Standard 58, Antineoplastic Therapy).

2. Allow clinicians who are actively trying to conceive, are pregnant, or are breastfeeding to refrain from exposure to hazardous drugs and waste.4,9 (Regulatory)

C. Safely dispose of hazardous waste and materials contaminated with hazardous drugs.

1. Place contaminated materials including needles, empty vials/syringes/solution containers, and administration sets, gloves, and gowns into sealable, leakproof bags or rigid waste containers that are clearly labeled for cytotoxic waste.2,4 (V, Regulatory)

2. Do not place drug-contaminated items in medical waste (red) containers because medical waste disposal is handled differently from hazardous waste (see Standard 18, Medical Waste and Sharps Safety).2,4 (V, Regulatory)

3. In the home setting, store such disposal containers in an area away from children and pets.4 (V)

4. Ensure that a spill kit is available, and follow directions for use in the event of a hazardous drug leak or spill. Report such spills as an occurrence according to organizational procedures. Large spills should be handled by health care workers who are trained in hazardous waste handling.2,4 (V, Regulatory)

D. Handle patient body fluids safely for at least 48 hours after receiving a hazardous drug and instruct the patient/caregiver/surrogate in safe handling:

1. Wear double chemotherapy gloves and a disposable gown when handling patient emesis or
excretions. Wear a face shield if splashing is anticipated.\(^4\) (V)

2. Use disposable linens whenever possible; in institutions, washable linens should be placed in a leakproof bag and handled as contaminated.\(^4\) (V)

3. Home setting: Place contaminated linens into a washable pillowcase separate from other items and wash twice in hot water. Discard disposable diapers in plastic bags and discard used gloves in cytotoxic waste container if available.\(^4\) (V)

REFERENCES

Note: All electronic references in this section were accessed September 16, 2015.

16. HAND HYGIENE

Standard

16.1 Hand hygiene is performed routinely during patient care activities.

Practice Criteria

A. Perform hand hygiene with an alcohol-based hand rub or antimicrobial soap and water during patient care:
 1. Before having direct contact with the patient.
 2. Before donning sterile gloves when inserting a central intravascular catheter.
 3. Before inserting a peripheral vascular catheter.
 4. After contact with the patient’s intact or nonintact skin.
 5. After contact with body fluids or excretions, mucous membranes, and wound dressings (if the hands are not visibly soiled).
 6. After contact with inanimate objects (including medical equipment) in the immediate vicinity of the patient.
 7. After removing gloves.1-6 (III)

B. Use an alcohol-based hand rub routinely when performing hand hygiene unless the hands are visibly soiled, or there is an outbreak of a spore-forming pathogen or norovirus gastroenteritis.1-8 (III)

C. Perform hand hygiene with either a nonantimicrobial soap or an antimicrobial soap and water:
 1. When the hands are visibly contaminated with blood or other body fluids.1-6 (II)
 2. After providing care or having contact with patients suspected or confirmed of being infected with norovirus gastroenteritis or a spore-forming pathogen during an outbreak (eg, *Clostridium difficile*).1-8 (II)
 3. Before eating and after using a restroom.1-8 (II)

D. Do not wear artificial fingernails or extenders when having direct contact with patients at high risk (eg, those in intensive care units or operating rooms, or when inserting a central vascular access device (CVAD)).1 (III)

E. Keep the nail length short.1-4 (III)

F. Store hand hygiene products in convenient locations at the point of use. Provide hand hygiene products that have a low irritancy potential and compatible hand lotions or creams to prevent irritant contact dermatitis.1,3 (IV)

G. Involve the clinician with the evaluation of hand hygiene products to assess for product feel, fragrancel, and skin irritation. Clinicians who have sensitivity to a particular product should be provided with an alternative. Other products for skin care such as gloves, lotions, and moisturizers should be assessed for compatibility with hand antisepsis products.1,3 (IV)

H. Do not add soap to a partially empty soap dispenser.1 (III)

I. Provide the clinician with education on hand hygiene, monitor hand hygiene performance, and provide feedback regarding hand hygiene performance.1,5 (III)

J. Educate the patient/caregiver/surrogate on when and how to perform hand hygiene, and ask the clinician to perform hand hygiene before having direct contact with the patient if it was not observed.1-6 (IV)

REFERENCES

Note: All electronic references in this section were accessed September 16, 2015.

1. Boyce JM, Pittet D. Guideline for Hand Hygiene in Health-Care Settings: Recommendations of the Healthcare Infection Control
17. COMPOUNDING AND PREPARATION OF PARENTERAL SOLUTIONS AND MEDICATIONS

Standard

17.1 Compounding of parenteral solutions and medications is in accordance with state and federal regulations, the American Society of Health-System Pharmacists (ASHP), the Drug Quality and Security Act, and the United States Pharmacopeia (USP) National Formulary (NF), including but not limited to General Chapter <797>.

Practice Criteria

A. Use sterile medications that were compounded in a pharmacy environment that meets USP <797>, state pharmacy rules and regulations, and ASHP guidelines. The compounding environment is defined by risk category.1-4 (V, Regulatory)
1. Use pharmacy-prepared or commercially available prefilled syringes of appropriate intravenous (IV) solution to flush and lock vascular access devices (refer to Standard 40, Flushing and Locking).
B. Begin the administration of an “immediate-use” compounded sterile product (CSP), as defined by USP <797>, within 1 hour after the start of the preparation, or discard.1-3 (V, Regulatory)
C. Administer IV push medication in a safe manner:
1. When it is necessary to prepare more than 1 medication in a single syringe for IV push administration, limit preparation to the pharmacy.2 (V)
2. In adults, use IV push medications in a ready-to-administer form (to minimize the need for manipulation outside the pharmacy sterile compounding area).3 (V)
3. If dilution or reconstitution of an IV push medication becomes necessary outside the pharmacy sterile compounding area, perform these tasks immediately prior to administration in a clean, uncluttered, and functionally separate location using organization-approved, readily available drug information resources and sterile equipment and supplies.5,6 (V)
4. If more than 1 syringe of medication or solution to a single patient needs to be prepared at the bedside, prepare each medication or solution separately, and immediately administer it before preparing the next syringe. If preparing several IV push medications at a time for sequential IV push administration, label each syringe as it is being prepared and prior to the preparation of any subsequent syringes. If 1 or more medications or solutions needs to be prepared away from the patient’s bedside, immediately label each syringe, 1 at a time, before preparing the next medication or solution.7 (V)
5. Do not dilute or reconstitute IV push medications by drawing up the contents into a commercially available, prefilled flush syringe of 0.9% sodium chloride (USP).5,6 (V)
6. Do not withdraw IV push medications from commercially available, cartridge-type syringes into another syringe for administration.7 (V)
D. Do not use IV solutions in containers intended for infusion, including minibags, as common-source containers (multiple-dose product) to dilute or reconstitute medications for 1 or more patients in clinical care areas (see Standard 40, Flushing and Locking). (V)5,7
E. Use safe injection practices:
1. Use a new needle and syringe for every injection.6-8 (III)
2. Discard a single-dose vial after a single entry.5-8 (V)
3. Dedicate a multidose vial for a single patient.5-8 (V)
a. Use a multidose vial up to a maximum of 28 days of opening or puncture (except for vaccines or when original manufacturer’s expiration date is shorter) or when the manufacturer’s expiration date is reached if it is not opened in a direct patient care area or a shorter period.¹⁻³,⁶⁻⁸ (V, Regulatory)
b. Label a multidose vial with the beyond-use date (BUD) and store the vial according to the manufacturer’s recommendations. Discard if the vial lacks a BUD, the sterility is compromised or questionable, and after the BUD has been met.¹⁻³,⁶ (V, Regulatory)
F. Use a filter needle or filter straw to withdraw medication from an ampoule, and discard any leftover medication.¹⁻³,⁵,⁶ (V, Regulatory)
G. Disinfect the vial septum before each entry and the neck of a glass ampoule prior to breaking the ampoule, and allow the disinfectant to dry prior to entry.⁵,⁶ (V)
H. Do not add medications to infusing containers of IV solutions (refer to Standard 57, Parenteral Medication and Solution Administration).

REFERENCES
Note: All electronic references in this section were accessed September 17, 2015.

18. MEDICAL WASTE AND SHARPS SAFETY

Standard
18.1 Each organization has protocols for the safe handling of regulated medical waste that are based on local, state, and federal laws and regulations.
18.2 Each organization has an exposure control plan that is in accordance with the Occupational Safety and Health Administration (OSHA) blood-borne pathogen standard.
18.3 Regulated medical waste is discarded in the appropriate container and disposed of according to local, state, and federal regulations.
18.4 Contaminated sharps are discarded in a nonpermeable, puncture-resistant, tamper-proof biohazard container.
18.5 Safety engineered devices, such as self-sheathing needles, that isolate or remove the blood-borne pathogens hazard are available in the workplace and consistently activated or used.

Practice Criteria
A. Use safety-engineered devices for needlestick injury prevention.¹⁻⁴ (Regulatory)
B. Consider the use of passive safety-engineered devices for needlestick injury prevention.⁵,⁷ (V)
C. Do not break or bend sharps. Use a 1-handed technique for recapping if necessary.¹⁻⁴,⁸⁻¹⁰ (V, Regulatory)
D. Activate built-in safety controls during use, and discard as a single unit after use.¹⁻⁴ (Regulatory)
E. Dispose of sharps in a sharps container that is closable, puncture resistant, leakproof, appropriately labeled or color coded, and large enough to accommodate disposal of the entire blood collection assembly (ie, holder and needle).¹⁻⁴,⁸⁻¹⁰ (V, Regulatory)
1. Place sharps containers in the immediate area where sharps are used and are easily accessible.¹⁻⁴ (V, Regulatory)
2. Replace sharps disposal containers when about three-fourths full to avoid overfilling and disposal-related injuries.¹⁻³,⁷,¹⁰⁻¹² (V, Regulatory)
F. Educate and train clinicians in the use of safety-engineered devices.¹⁻⁴,⁸⁻¹⁰ (V, Regulatory)
G. Identify, report, and document exposure to potentially infectious materials or injury from sharps; follow organizational protocol for postexposure follow-up. Monitor and analyze data for trends and implement performance improvement as needed.¹⁻³,⁸⁻¹⁰ (V, Regulatory)

REFERENCES
Note: All electronic references in this section were accessed September 17, 2015.

19. STANDARD PRECAUTIONS

Standard

19.1 Standard Precautions are used during all infusion procedures that potentially expose the clinician to blood and body fluids, secretions, excretions except sweat, nonintact skin, and mucous membranes and may contain transmissible infectious agents.

Practice Criteria

A. Select personal protective equipment (PPE) based on the nature of the patient interaction and potential for exposure to blood, body fluids, or infectious agents, and the Centers for Disease Control and Prevention (CDC) isolation precaution guidelines in effect at the time of the patient encounter for specific communicable diseases (eg, Ebola virus disease).1,2 (III, Regulatory)

B. Ensure that sufficient and appropriate PPE is available and readily accessible at the point of care.2,3 (V, Regulatory)

C. Perform hand hygiene immediately in between each step of removing PPE if the hands become contaminated, immediately after removing all PPE, and before leaving the patient’s environment.1,4 (III)

D. When wearing PPE, keep the hands away from the face, and limit surfaces touched in the patient’s environment.4 (V)

E. Wear gloves that fit appropriately and extend to cover the wrist of an isolation gown (if worn), when there is potential contact with blood (eg, during phlebotomy), body fluids, mucous membranes, nonintact skin, or contaminated equipment.1,2,5 (III, Regulatory)

1. Change gloves during patient care when torn or heavily contaminated, or if moving from a contaminated body site to a clean body site.1,5 (IV)

F. Wear a gown to protect skin and clothing during procedures or activities in which contact with blood or body fluids is anticipated.1,2 (III, Regulatory)

1. Do not wear the same gown or gloves when caring for more than 1 patient.1 (IV)

G. Wear eye protection, which may include goggles with a face mask, or face shield alone, to prevent the potential splash or spray of blood, respiratory secretions, or other body fluids from the mouth, nose, and eyes.1,2 (III, Regulatory)

H. Educate the clinician to implement respiratory hygiene/cough etiquette by covering the mouth/nose with a tissue when coughing, promptly disposing of used tissues, and performing hand hygiene.1 (III)

I. Educate the patient and caregiver to implement respiratory hygiene/cough etiquette by placing a face mask on the coughing person if tolerated and appropriate, or covering the mouth/nose with a tissue when coughing, promptly disposing of used tissues, and performing hand hygiene.1 (III)

J. In the home setting when caring for a patient with a multidrug-resistant organism (MDRO), following Standard Precautions, limit reusable patient care
equipment and leave in the home until discharged. Clean and disinfect before removing from the home or transport in a container (eg, plastic bag) to an appropriate site for cleaning and disinfection.6 (IV)

REFERENCES

Note: All electronic references in this section were accessed September 17, 2015.

20. TRANSMISSION-BASED PRECAUTIONS

Standard

20.1 Transmission-Based Precautions, including Airborne Precautions, Droplet Precautions, and/or Contact Precautions, are implemented when strategies in addition to Standard Precautions are required to reduce the risk for transmission of infectious agents. 20.2 Airborne Precautions are implemented to prevent the transmission of infectious agents that remain infectious when suspended in the air over long distances or as recommended by the Centers for Disease Control and Prevention (CDC) isolation guidelines in effect at the time of the patient encounter.

20.3 Droplet Precautions are implemented to prevent transmission of pathogens spread through close respiratory or mucous membrane contact with respiratory secretions.

20.4 Contact Precautions are implemented to prevent the transmission of infectious agents, which are spread by direct or indirect contact with the patient or the environment, including when there are excessive bodily discharges, such as wound drainage.

20.5 Adapt and apply Transmission-Based Precautions as appropriate for non–acute care settings where infusion therapy is provided, including long-term care facilities, home care, and other settings.

Practice Criteria

A. Select and use personal protective equipment (PPE) for Transmission-Based Precautions based on the nature of the patient interaction and potential for exposure to blood, body fluids, or infectious agents and the CDC isolation precaution guidelines in effect at the time of the patient encounter for specific communicable diseases (eg, Ebola virus disease).1,2 (III, Regulatory)
B. Wear a face mask and observe Droplet Precautions, in addition to Standard Precautions, when there is potential contact with respiratory secretions and sprays of blood or body fluids.1,2 (III, Regulatory)
C. Perform hand hygiene immediately in between each step of removing PPE if the hands become contaminated, immediately after removing all PPE, and before leaving the patient’s environment.1,3,4 (III)
D. Wear a fit-tested N95-or-higher respirator certified by the National Institute for Occupational Safety and Health (NIOSH) and observe Airborne Precautions, in addition to Standard Precautions, if the patient is suspected or confirmed of having an infection spread by airborne route or Ebola virus disease to prevent the potential exposure to infectious agents transmitted via the airborne route (eg, M. tuberculosis). Perform fit testing prior to its initial use and at least annually thereafter.1,3,5 (III)
E. Maintain Transmission-Based Precautions until it is determined that the cause of the symptoms is not due to an infectious agent or the duration of the recommended isolation precautions have been met.1 (III)
F. In the home setting, when caring for a patient with a multidrug-resistant organism (MDRO) or on Contact Precautions, limit reusable patient care equipment, and leave in the home until discharged. Disinfect before removing from the home in a container (eg, plastic bag) or transport to an appropriate site for cleaning and disinfection.6 (IV)

REFERENCES

Note: All electronic references in this section were accessed September 18, 2015.

21. DISINFECTION OF DURABLE MEDICAL EQUIPMENT

Standard

21.1 Durable medical equipment (DME), such as intravenous (IV) poles; flow-control devices; ultrasound or infrared devices for vascular visualization; and other nondisposable, hard nonporous surface, infusion-related equipment are cleaned and disinfected using an Environmental Protection Agency (EPA)-registered disinfectant.

21.2 Cleaning and disinfectant products are used in accordance with the equipment and manufacturers’ directions for use to prevent damage or alteration to the function or performance of the equipment.

Practice Criteria

A. Inspect DME surfaces for breaks in integrity that would impair either cleaning or disinfection. Discard or repair equipment that no longer functions as intended or cannot be properly cleaned and disinfected.1 (IV)
B. Clean and disinfect DME surfaces when visibly soiled, on a regular basis (eg, at a frequency defined by organizational policies and procedures) and at established intervals during long-term single-patient use.1 (IV)

C. Clean and disinfect DME surfaces with an EPA-registered hospital disinfectant according to the label’s safety precautions and directions for use.1,2 (V)
D. Implement patient-dedicated use of DME when a patient is placed on Contact Precautions. If common use of medical equipment for multiple patients is unavoidable (eg, ultrasound or infrared devices for vascular visualization), clean and disinfect the equipment before use on another patient (see Standard 20, Transmission-Based Precautions).1,3 (III,V)
E. Handle DME according to Standard Precautions. Wear personal protective equipment (PPE—eg, gloves, gown), according to the level of anticipated contamination, when handling patient care equipment and instruments/devices are visibly soiled or may have been in contact with blood or body fluids.4 (III)
F. Limit the amount of DME that is brought into the home of patients infected or colonized with multidrug-resistant organisms (MDROs) or on Contact Precautions. When possible, leave DME in the home until the patient is discharged (see Standard 20, Transmission-Based Precautions).3,4 (IV)
G. Place used DME (eg, IV poles, flow-control devices) in a plastic bag or decontaminate prior to transport to another location (ie, soiled utility area or warehouse) for subsequent cleaning and disinfection.3,4 (IV)

REFERENCES

Note: All electronic references in this section were accessed September 18, 2015.

Section Four: Infusion Equipment

Section Standards

I. To ensure patient safety, the clinician is competent in the use of infusion equipment, including knowledge of appropriate indications and contraindications and manufacturers’ directions for use.

II. The use and maintenance of infusion equipment is established in organizational policies and procedures.

22. VASCULAR VISUALIZATION

Standard

22.1 To ensure patient safety, the clinician is competent in the use of vascular visualization technology for vascular access device (VAD) insertion. This knowledge includes, but is not limited to, appropriate vessels, size, depth, location, and potential complications.

22.2 Vascular visualization technology is used in patients with difficult venous access and/or after failed venipuncture attempts.

22.3 Vascular visualization technology is employed to increase the success with peripheral cannulation and decrease the need for central vascular access device (CVAD) insertion, when other factors do not require a CVAD.

Practice Standard

A. Assess the patient’s medical history for conditions that may affect the peripheral vasculature and increase the need for devices to assist in locating venous or arterial insertion sites. Factors that increase difficulty with locating veins by observation and palpation, known as landmark techniques, include but are not limited to:

1. Disease processes that result in structural vessel changes (eg, diabetes, hypertension).
2. History of frequent venipuncture and/or lengthy courses of infusion therapy.
3. Variations in skin between patient populations, such as darker skin tones and excessive hair on the skin.
4. Skin alterations, such as the presence of scars or tattoos.
5. Patient’s age (both neonates and the elderly).
6. Obesity.
7. Fluid volume deficit.
8. Intravenous drug users.1-7 (III)

B. Consider the use of visible light devices that provide transillumination of the peripheral veins and arteries in infants and children with difficult venous access.

1. Use only cold light sources in devices designed for vascular visualization. Thermal burns have been reported due to close contact between skin and the light source when the device emits heat (eg, traditional flashlights).
2. Disinfect the device after each patient use due to the potential for blood contamination during the procedure (refer to Standard 21, Disinfection of Durable Medical Equipment).
3. Darken the room to remove ambient light levels when using these devices; ensure adequate light to observe blood return from the cannula or catheter.
4. Be aware that the light spectrum being used limits the successful location of deep veins due to high amounts of body fat.1,5-11 (I)

C. Consider the use of near-infrared (nIR) light technology to aid in locating viable superficial peripheral venous sites and decreasing procedure time for short peripheral catheter insertion.

1. Available technology includes hands-free devices that capture an image of the veins and reflect it back to the skin’s surface or to a screen and transillumination projected to a screen. The clinician may choose to use a static process by imaging and marking the vein location on the skin or a dynamic process of using the image to guide catheter insertion. No studies have compared...
these various methods of device use, leaving this
decision to the discretion of the clinician. 1,6,12
(III)
2. Consider nIR light technology to identify periph-
eral venous sites and facilitate more informed
decisions about vein selection (ie, bifurcating
veins, tortuosity of veins, palpable but nonvisi-
able veins). Two nonrandomized studies have
shown improvement in first-attempt success for
peripheral catheter insertion using nIR; howev-
er, other studies have not shown this same out-
come. Additional research is needed to address
the reason(s), which could include differences in
nIR devices, patient-related factors, and skill
level of the inserters before using the nIR
devices.11-19 (I)
D. Consider nIR for cannulation of the radial artery at
the wrist in children. It was slightly more success-
ful on first attempt with a lower total number of
attempts, although there was no statistical differ-
ence or clinical improvement noted.20 (V)
E. Use ultrasonography (US) for short peripheral cath-
eter placement in adult and pediatric patients with
difficult venous access. 2 (II)
1. In pediatrics, US significantly reduces the number
of venipuncture attempts and procedure time. In
adults, US studies show a trend toward fewer
venipuncture attempts and reduced risk of periph-
eral catheter failure. There is significant variation
between studies, including use of 1 versus 2 insert-
ers, use of the static versus dynamic techniques,
and experience level of the inserters within and
between studies. Failure rates of US-guided periph-
eral catheters vary between studies, with hema-
toma being the most common complication.21 (I)
2. Choose a catheter length that will allow suffi-
cient length residing inside the vein lumen. Vein
depth greater than or equal to 1.2 cm and inser-
tion into the deep brachial or basilic veins of the
upper arm are associated with shorter survival
probability; however, vein diameter had no effect
on catheter survival. Longer catheter length (ie,
12 cm) is reported to have longer survival than
5-cm catheter length.22,23 (III)
3. Dynamic, or “real-time,” visualization of the need-
le position is recommended to prevent vein
wall damage.24 (V)
4. Use of short axis (out of plane view) versus long
axis (in plane view) for peripheral catheter inser-
tion depends upon the size and depth of the tar-
et vein and the skill of the inserter. 24,25 (V)
F. Use US guidance for insertion of midline catheters in
patients with difficult venous access. 26,27 (V)
G. Use US guidance for arterial puncture and catheter
placement in adults and children. 28,29 (I)
H. Use US guidance when placing CVADs in adults and
children to improve insertion success rates, reduce
number of needle punctures, and decrease insertion
complication rates.2,24,25,29-33 (I)
1. Scan the anatomy prior to insertion to identify
vascular anomalies (eg, occlusion or thrombosis)
and to assess vein diameter.22,25,29 (IV)
2. Use a “real-time” or dynamic technique for
CVAD insertion. 2,31 (I)
3. For internal jugular insertion sites, the short-axis
view increases insertion success, and the long-
axis view is technically more difficult to achieve.
Position the probe vertically to the vein and
insert the needle as close to the probe as possible
to keep the needle within view.25,26 (III)
4. US-guided saphenous and femoral CVADs placed
in critically ill neonates and infants have out-
comes equivalent to insertion under fluoroscopy
in an interventional radiology suite.25 (IV)
I. Using a long-axis view, US-guided subclavian
catheters are commonly inserted below the clavi-
cle at the midclavicular line or more laterally. The
puncture site may allow the catheter to enter the
axillary vein first or, depending upon the trajec-
tory of the needle, may enter the subclavian vein
directly.36 (V)
J. Use a large, sterile transparent membrane dressing
over the probe (ie, for peripheral catheter insertion)
or sterile sheath cover, and sterile gel.27,37 (V)

REFERENCES

Note: All electronic references in this section were accessed September
18, 2015.
1. Hadaway L. Infusion therapy equipment. In: Alexander M,
Corrigan A, Gorski L, Hankins J, Perucca R, eds. Infusion
Nursing: An Evidence-Based Approach. 3rd ed. St Louis, MO:
Saunders/Elsevier; 2010:391-436.
2. Lamperti M, Bodenham AR, Pitiruti M, et al. International evi-
dence-based recommendations on ultrasound-guided vascular
venous access difficulty in the emergency department using body
mass index and a clinical evaluation of venous accessibility. J
4. Fields JM, Piela NE, Au AK, Ku BS. Risk factors associated
with difficult venous access in adult ED patients. Am J Emerg
5. Shahzad A, Naufal Mohamad Saad M, Walter N, Saeed Malik A,
Meriaudeau F. A review on subcutaneous veins localization using
125-133.
6. Peterson KA, Phillips AL, Truemer E, Agrawal S. Does the use of
an assistive device by nurses impact peripheral intravenous
2012;27(2):134-143.
7. Houston PA. Obtaining vascular access in the obese patient
8. ECRI Institute. Hazard report: common flashlights can cause
burns when used for transillumination. Health Devices. 2003;
32(7):273-274.
23.2 The original tip location is documented in the patient’s medical record and made available to other organizations involved with the patient’s care.

23.3 The CVAD tip location with the greatest safety profile in adults and children is the cavoatrial junction (CAJ).

Practice Criteria

A. Determine the desired catheter length for insertion by anthropometric measurement including, but not limited to, external measurement from the planned insertion site to the third intercostal space, use of formulas to calculate length based on body surface area, or measurement from preprocedure chest radiographs.1,3 (IV)

B. Avoid CVAD tip locations in veins distal to the superior or inferior vena cava (eg, innominate or brachiocephalic, subclavian, external, or common iliac veins), as they are associated with higher rates of complications. These noncentral, suboptimal tip locations are included in data collection for central line-associated bloodstream infection (CLABSI) surveillance according to the National Healthcare Safety Network from the Centers for Disease Control and Prevention (CDC). Although these tip locations may be clinically indicated in rare cases due to anatomical or pathophysiological changes, the goal for tip location should be the CAJ.4-8 (IV)

C. Position the tip of a CVAD in the lower segment of the superior vena cava at or near the CAJ for adults and children.

1. For upper body insertion sites, respiratory movement, arm movement, and changes in body position will cause the CVAD tip to move above or below the CAJ, indicating excursion into the upper right atrium. Tip location deeper in the right atrium near the tricuspid valve or in the right ventricle is associated with cardiac arrhythmias.9-11 (II)

2. For lower body insertion sites, the CVAD tip should be located in the inferior vena cava above the level of the diaphragm.3 (IV)

D. Avoid intracardiac tip location in neonates and infants less than 1 year of age, as this tip location has been associated with vessel erosion and cardiac tamponade.6,10 (II)

E. Use methods for identifying CVAD tip location during the insertion procedure (ie, “real time”) due to greater accuracy, more rapid initiation of infusion therapy, and reduced costs.

1. Use electrocardiogram (ECG) methods with either a metal guidewire or a column of normal saline inside the catheter lumen and observe the ECG tracing to place the CVAD tip at the CAJ. Follow manufacturers’ directions for use with other ECG-based technology using a changing light pattern to detect tip location.

2. Assess patient for known history of cardiac dysrhythmias and the presence of a P wave on ECG (if available) before planning to use ECG technology for placement. Contraindications to the use of ECG technology include patients with an abnormal ECG rhythm with an absence or alteration in the P wave (eg, presence of pacemakers, atrial fibrillation, extreme tachycardia). Follow manufacturers’ directions for use in the appropriate patient populations.

3. Use caution with ultrasound for CVAD tip location, as its use in replacing chest radiographs is controversial in all ages due to small sample sizes in available studies and lack of standardized techniques. Consider use in neonates and in emergency departments when immediate knowledge of the CVAD tip location is beneficial.

4. Avoid fluoroscopy except in the case of difficult CVAD insertions, as it requires exposure to ionizing radiation.

5. Postprocedure radiograph imaging is not necessary if alternative tip location technology confirms proper tip placement.3,12-18 (II)

F. Confirmation of tip location by postprocedure chest radiograph remains acceptable practice and is required in the absence of technology used during the procedure. This method is less accurate because the CAJ cannot be seen on the radiograph, requiring identification of tip location by measurement from the carina, trachea-bronchial angle, or thoracic vertebral bodies. Additionally, a change in the patient position from supine to standing, usually required for the radiograph, results in movement of the catheter tip by as much as 2 cm.3,11,12,19,20 (II)

G. Recognize that radiographic or ECG tip location technology does not differentiate between venous and arterial placement. When arterial placement is suspected, use other methods to confirm or rule out arterial placement (refer to Standard 53, *Central Vascular Access Device (CVAD) Malposition*).

H. Clinicians with documented competency determine the tip location of a CVAD by using ECG or assessing the postprocedure chest radiograph and initiate infusion therapy based on this assessment. When a postprocedure chest radiograph is used, the radiologist as directed by organizational policies and procedures authors the complete report.2,21 (V)

I. Document the CVAD tip location by including a copy of the ECG tracing, chest radiograph report, or other appropriate report in the medical record (refer to Standard 10, *Documentation in the Medical Record*).

REFERENCES

Note: All electronic references in this section were accessed September 18, 2015.

24. FLOW-CONTROL DEVICES

Standard

24.1 Factors to be considered in the choice of a flow-control device include patient age and condition, prescribed infusion therapy, and care setting.

24.2 Administration sets with anti–free-flow mechanisms are used with electronic infusion devices (EIDs).

24.3 Dose-error reduction systems are considered in the selection and use of EIDs.

Practice Criteria

A. Choose a flow-control device for a given clinical application taking into account factors such as age, acuity, and mobility of the patient; severity of illness; type of therapy; dosing considerations; health care setting; and the potential for side effects or adverse effects of the therapy.1-6 (V)

1. Use manual flow-control devices such as flow regulators and pressure bags or mechanical pumps such as elastomeric balloon pumps, spring-based pumps, and negative-pressure pumps for lower-risk infusions.1-5 (V)

2. Use EIDs for the administration of infusion therapies that require precise flow control and for patient safety. Features (eg, anti–free-flow protection, air-in-line, occlusion alarms) should be consistent with recommendations for safe and effective use.1-7 (V)

3. Consider use of smart pumps with dose-error reduction software as they are associated with reduced risk for infusion-related medication errors including error interceptions (eg, wrong rate) and reduced adverse drug events (refer to Standard 13, Medication Verification).

B. Monitor flow-control devices during the administration of infusion therapy to ensure safe and accurate delivery of the prescribed infusion rate and volume.1-3-15 (IV)
C. Do not rely on EID alarms to detect intravenous (IV) infiltration or extravasation, as these alarms are not intended to detect disruption of the fluid flow pathway.13-15 (V)

D. Standardize the types of pumps used in an organization. When feasible, pumps available in the setting should be standardized to promote user familiarity with operation. Involve end users in the evaluation and selection of flow-control devices (see Standard 12, Product Evaluation, Integrity, and Defect Reporting).2,4,16-25 (IV)

E. Recognize the problem of alarm fatigue with multiple electronic monitoring and therapeutic devices. Implement evidence-based recommendations (eg, alarm parameter settings) from professional agencies through an interprofessional team process.3,25 (III)

F. Educate patients and/or caregivers in the home care setting about safe and effective use of flow-control devices using appropriate teaching materials and methods (see Standard 8, Patient Education).6,26,27 (V)

REFERENCES

Note: All online references in this section were accessed August 25, 2015.

25. BLOOD AND FLUID WARMING

25.1 Blood and fluid warming are performed only with devices specifically designed for that purpose.

25.2 Blood is warmed in a manner to avoid hemolysis.

25.3 Blood and fluid warming are performed only with devices specifically designed for that purpose.

25.3 Blood is warmed in a manner to avoid hemolysis.
Practice Criteria

A. Use blood and fluid warmers only when warranted by patient history, clinical condition, and prescribed therapy including, but not limited to, avoiding or treating hypothermia intraoperatively, during treatment of trauma, or from exposure, during plasma exchange for therapeutic apheresis, for patients known to have clinically significant cold agglutinins, for neonate exchange transfusions, or during replacement of large blood volumes.1-11 (II)

B. Use only a US Food and Drug Administration (FDA)-cleared blood warming device when clinically indicated and in accordance with the manufacturer’s directions for use, such as with large-volume or rapid transfusions, exchange transfusions, patients with clinically significant conditions, and the neonate/pediatric population. The risk for clinically important hypothermia is increased when blood is transfused through a central vascular access device (CVAD) (see Standard 62, Transfusion Therapy).1,5,11,12 (V)

C. Use blood and fluid warmers equipped with warning systems, including an audible alarm and visual temperature gauges and within the maintenance date.12 (V)

D. Do not use warming methods not expressly designed for blood and fluid warming including, but not limited to, microwave ovens, hot water baths, and other devices because temperatures and infection risks cannot be controlled.1,4,12 (V)

E. Do not warm solutions and blood above a set point temperature recommended by the manufacturer of the warming device.9 (V)

F. Warming of contrast media is sometimes performed in the radiology or surgical environment to reduce the viscosity and may help to reduce extravasation of higher- viscosity contrast media. When contrast media is warmed, use a temperature log for the warmer, and follow the device manufacturer’s guidelines for maintenance of the warming device. Consult the manufacturer’s package insert for the specific contrast agent regarding whether warming is contraindicated.13,14 (V)

REFERENCES

Note: All references in this section were accessed August 26, 2015.

2. AABB. Primer of Blood Administration (Revised September 2010). Bethesda, MD: AABB; 2010.
Section Five: Vascular Access Device (VAD) Selection and Placement

Section Standards

I. To ensure patient safety, the clinician is competent in the use and placement of vascular access devices (VADs), including knowledge of anatomy, physiology, and appropriate infusion therapies for each type of VAD.

II. Indications and protocols for VAD selection and placement are established in organizational policies, procedures, and/or practice guidelines and according to manufacturers’ directions for use.

26. VASCULAR ACCESS DEVICE (VAD) PLANNING

Standard

26.1 The appropriate type of vascular access device (VAD), peripheral or central, is selected to accommodate the patient’s vascular access needs based on the prescribed therapy or treatment regimen; anticipated duration of therapy; vascular characteristics; and patient’s age, comorbidities, history of infusion therapy, preference for VAD location, and ability and resources available to care for the device.

26.2 Selection of the most appropriate VAD occurs as a collaborative process among the interprofessional team, the patient, and the patient’s caregiver(s).

26.3 The VAD selected is of the smallest outer diameter with the fewest number of lumens and is the least invasive device needed for the prescribed therapy.

26.4 Peripheral vein preservation is considered when planning for vascular access.

26.5 Safety-engineered devices are selected and consistently activated and/or used.

Practice Criteria

I. Short Peripheral Catheters

A. Choose a short peripheral catheter as follows:

1. Consider the infusate characteristics (eg, irritant, vesicant, osmolarity) in conjunction with anticipated duration of infusion therapy (eg, less than 6 days) and availability of peripheral vascular access sites.1-7 (IV)

2. Use vascular visualization technology (eg, near infrared, ultrasound) to increase success for patients with difficult venous access (refer to Standard 22, Vascular Visualization).

3. Do not use peripheral catheters for continuous vesicant therapy, parenteral nutrition, or infusates with an osmolarity greater than 900 mOsm/L (see Standard 58, Antineoplastic Therapy; Standard 61, Parenteral Nutrition).1-3, 6-8 (IV)

B. Select the smallest-gauge peripheral catheter that will accommodate the prescribed therapy and patient need1-4; (V)

1. Consider a 20- to 24-gauge catheter for most infusion therapies. Peripheral catheters larger than 20 gauge are more likely to cause phlebitis.1-4,9 (IV)

2. Consider a 22- to 24- gauge catheter for neonates, pediatric patients, and older adults to minimize insertion-related trauma.1-4 (V)

3. Consider a larger-gauge catheter (16-20 gauge) when rapid fluid replacement is required, such as with trauma patients, or a fenestrated catheter for a contrast-based radiographic study.1-4,10 (IV)

4. Use a 20- to 24- gauge catheter based on vein size for blood transfusion: when rapid transfusion is required, a larger-size catheter gauge is
recommended (refer to Standard 62, *Transfusion Therapy*)
5. Use steel winged devices only for single-dose administration. The device is not left in place.1,3,5 (IV)

II. Midline Catheters

A. Choose a midline catheter as follows:
1. Consider infusate characteristics in conjunction with anticipated duration of treatment (eg, 1-4 weeks).1,3-5 (IV)
2. Consider a midline catheter for medications and solutions such as antimicrobials, fluid replacement, and analgesics with characteristics that are well tolerated by peripheral veins.11-14 (V)
3. Do not use midline catheters for continuous vesicant therapy, parenteral nutrition, or infusates with an osmolarity greater than 900 mOsm/L (see Standard 61, *Parenteral Nutrition*).1,3,6,11 (V)
4. Use caution with intermittent vesicant administration due to risk of undetected extravasation. The administration of vancomycin for less than 6 days through a midline catheter was found to be safe in 1 study.1,3,5 (IV)
5. Avoid the use of a midline catheter when the patient has a history of thrombosis, hypercoagulability, decreased venous flow to the extremities, or end-stage renal disease requiring vein preservation.1,16-17 (IV)

III. Central Vascular Access Devices (CVADs) (Nontunneled, Tunneled, Implanted Ports)

A. Use CVADs to administer any type of infusion therapy.3,6,17 (V)
B. To minimize unnecessary CVAD placement, identify an evidence-based list of indications for CVAD use including, but not limited to1: (IV)
1. Clinical instability of the patient and/or complexity of infusion regimen (multiple infusates).
2. Episodic chemotherapy treatment anticipated for more than 3 months.
3. Prescribed continuous infusion therapy (eg, parenteral nutrition, fluid and electrolytes, medications, blood or blood products).
4. Invasive hemodynamic monitoring.
5. Long-term intermittent infusion therapy (eg, any medication including anti-infectives in patients with a known or suspected infection).
6. History of failed or difficult peripheral venous access, if use of ultrasound guidance has failed.
C. Recognize risks with peripherally inserted central catheters (PICCs), including venous thrombosis and an increased risk for central line-associated bloodstream infection (CLABSI) in hospitalized patients.

1. Use a PICC with caution in patients who have cancer or are critically ill due to venous thrombosis and infection risk.19,20 (III)
2. Measure the vein diameter using ultrasound before insertion and consider choosing a catheter with a catheter-to-vein ratio of 45% or less (refer to Standard 52, *Central Vascular Access Device (CVAD)-Associated Venous Thrombosis*).
3. Do not use a PICC as an infection prevention strategy.18,20 (III)
D. Collaborate with the interprofessional team to consider anti-infective CVADs in the following circumstances, as anti-infective CVADs have shown a decrease in colonization and/or CLABSI in some settings.5,18 (I)
1. Expected dwell of more than 5 days.
2. CLABSI rate remains high even after employing other preventive strategies.
3. Patients with enhanced risk of infection (ie, neutropenic, transplant, burn, or critically ill patients).
4. Emergency insertions.
5. Do not use anti-infective CVADs in patients with allergies to the anti-infective substances, such as chlorhexidine, silver sulfadiazine, rifampin, or minocycline.
E. Consider an implanted vascular access port for patients who are anticipated to require intermittent long-term infusion therapy (eg, antineoplastic therapy). When used intermittently, ports have a lower incidence of catheter-related bloodstream infection (CR-BSI); however, continuous port access has infection rates that are similar to other long-term CVADs.3,6,21,22 (IV)
1. Contraindications to vascular access port insertion include severe uncorrectable coagulopathy, uncontrolled sepsis or positive blood culture, and burns, trauma, or neoplasm that preclude chest wall placement.22-23 (V)
2. Radiologically guided insertion of implanted vascular access ports in the forearm may be an alternative site for patients in whom chest ports cannot be implanted.24 (IV)
3. The implanted vascular access port, when not accessed, has the advantage of allowing for ease of bathing and swimming and is associated with an improved patient self-image.2,17 (V)
F. Consider a cuffed, tunneled CVAD for patients who are anticipated to require intermittent or continuous long-term infusion therapy (eg, antineoplastic therapy, parenteral nutrition).6,17,25 (V)
G. Consider the need for a CVAD that is designed for power injection and know the pressure limits and other limitations (eg, maximum number of power injections) of the device and all attached or add-on devices (eg, implanted port access needle, extension
set, needleless connector) to avoid catheter rupture. 26–27 (V)

H. Plan proactively for a fistula or graft for patients with chronic kidney disease (CKD) as a permanent access for dialysis (refer to Standard 29, Hemodialysis Vascular Access Devices [VADs]).

IV. Arterial Catheters

A. Place a peripheral arterial or pulmonary arterial catheter for short-term use for hemodynamic monitoring, obtaining blood samples, and analyzing blood gas in critically ill patients. 5 (V)

B. The most commonly used catheter gauge for radial catheters is a 20-gauge catheter; a low rate of complications was documented in one large study. 28 (V)

REFERENCES

Note: All electronic references in this section were accessed August 31, 2015.

27. SITE SELECTION

Standard

27.1 Select the vein or site that best accommodates the outer diameter and length of the vascular access device (VAD) required for the prescribed therapy.

27.2 Peripheral vein preservation is considered when selecting a site for infusion therapy.

27.3 Assess the patient’s condition; age; diagnosis; comorbidities; condition of the vasculature at the insertion site and proximal to the intended insertion site; condition of skin at intended insertion site; history of previous venipunctures and access devices; type and duration of infusion therapy; and patient preference for VAD site selection.

27.4 Placement of central vascular access devices (CVADs) by clinicians competent in the procedure is established in organizational policies, procedures, and/or practice guidelines and in accordance with rules and regulations promulgated by the state’s Board of Nursing or other licensing agency.

Practice Criteria

I. Peripheral Venous Access via Short Peripheral Catheters

A. For adult patients:

1. Use the venous site most likely to last the full length of the prescribed therapy, using the forearm to increase dwell time, decrease pain during dwell time, promote self-care, and prevent accidental removal and occlusions. Consider veins found on the dorsal and ventral surfaces of the upper extremities, including the metacarpal, cephalic, basilic, and median veins.1-9 (IV)

2. Do not use veins of the lower extremities unless necessary due to risk of tissue damage, thrombophlebitis, and ulceration.3,10,11 (IV)

B. For pediatric patients:

1. Use the venous site most likely to last the full length of the prescribed therapy, considering veins in the hand, forearm, and upper arm below the axilla. Avoid the antecubital area, using the basilic, cephalic, median cubital, and brachial veins, with the basilic vein preferred. For neonates and pediatric patients, additional site selections include veins in the leg with the tip below the groin and in the scalp with the tip in the neck, above the thorax.7,12-13,32-34 (V)

2. For infants and toddlers, also consider veins of the scalp, and if not walking, the foot.

3. Avoid the hand or fingers, or the thumb/finger used for sucking.

4. Avoid veins in the right arm of infants and children after procedures treating congenital cardiac defects that may have decreased blood flow to the subclavian artery.5,12-15 (V)

C. For all patients:

1. Discuss with the patient the arm preference for VAD site selection, including a recommendation to use sites in the nondominant arm.6,7,16,17 (V)

2. Avoid the ventral surface of the wrist due to pain on insertion and possible nerve damage (refer to Standard 47, Nerve Injuries).

3. Avoid areas of flexion and areas of pain on palpation; avoid compromised areas and sites distal to these compromised areas, such as areas with open wounds; areas on an extremity with an infection; veins that are compromised (eg, bruised, infiltrated, phlebitic, sclerosed, corded, or engorged); areas of valves; areas of previous infiltration or extravasation; and areas of planned procedures.3,4,7,11,13,18 (V)

4. Avoid veins in an upper extremity on the side of breast surgery with axillary node dissection, with lymphedema, or with an arteriovenous fistula/graft; after radiation therapy to that side of the body; or the affected extremity from a cerebrovascular accident. For patients with chronic kidney disease, avoid unnecessary venipuncture of peripheral veins in the upper extremity intended for future vascular access. A collaborative discussion with the patient and the licensed independent practitioner (LIP) is needed to discuss the benefits and risks of using a vein in an affected extremity (see Standard 29, Hemodialysis Vascular Access Devices [VADs]).7,19-25 (V)

5. Cannulation of hemodialysis fistulas, grafts, and catheters for infusion therapy requires the order of a nephrologist or LIP, unless an emergency situation exists.7,25 (V)

6. Use ultrasonography (US) for short peripheral catheter placement in adult and pediatric patients with difficult venous access and/or after failed venipuncture attempts (see Standard 22, Vascular Visualization).26-31 (I)

II. Peripheral Venous Access via Midline Catheters

A. Select sites in the upper arm, preferred, or secondarily the region of the antecubital fossa, using the basilic, cephalic, median cubital, and brachial veins, with the basilic vein preferred. For neonates and pediatric patients, additional site selections include veins in the leg with the tip below the groin and in the scalp with the tip in the neck, above the thorax.7,12,13,32-34 (V)

B. Avoid cannulation in areas with pain on palpation, areas of open wounds, areas on an extremity with an
infection, veins that are compromised (eg, bruised, infiltrated, phlebitic, sclerosed, corded, or engorged), and areas of planned procedures. 3,7,11,12 (V)

C. Avoid veins in the right arm of infants and children after procedures treating specific congenital cardiac defects that may have decreased blood flow to the subclavian artery. 12 (V)

D. Consider using vascular visualization technologies that aid in vein identification and selection for difficult intravenous access (see Standard 22, Vascular Visualization). 27,28,31 (I)

III. Central Venous Access via Peripherally Inserted Central Catheters

A. Select the median cubital, cephalic, basilic, and brachial veins with sufficient size for peripherally inserted central catheters (PICC) cannulation. A venous site in adults where the catheter-to-vein ratio is equal to or less than 45% is recommended. For neonate and pediatric patients, additional site selections include the axillary vein, the temporal vein and posterior auricular vein in the head, and the saphenous and popliteal veins in the lower extremities. Use the best available vein in neonates: upper and lower extremities have similar complication rates, although tip placement at removal was more frequently non-central for PICCs in upper extremities. 33-40 (IV)

B. Avoid areas of pain on palpation or areas with wounds, and veins that are compromised (eg, bruised, infiltrated, phlebitic, sclerosed, corded, or engorged). 3,41 (IV)

C. Avoid PICCs in patients with chronic kidney disease due to the risks of central vein stenosis and occlusion, as well as resultant venous depletion preventing future fistula construction (see Standard 29, Hemodialysis Vascular Access Devices [VADs]). 19,22,42,43 (IV)

D. Use ultrasound (US) to aid in vein identification and selection for decreased adverse events and first-attempt success (see Standard 22, Vascular Visualization). 36,39,44-46 (IV)

IV. Central Venous Access via Nontunneled Central Vascular Access Devices

A. To minimize the risk of catheter-related infection with a nontunneled CVAD, the subclavian vein is favored in adult patients, rather than the jugular or femoral veins. However, for patients with chronic kidney disease, consider the risks of central vein stenosis and venous occlusion when the subclavian vein is used; weigh the benefits and risks that accompany each access site. Avoid areas of wounds or infections (see Standard 29, Hemodialysis Vascular Access Devices [VADs]; Standard 48, Central Vascular Access Device [CVAD] Occlusion). 11,19,41,47-49 (I)

B. To minimize the risk of catheter-related thrombotic complications with a nontunneled CVAD, the subclavian vein is recommended in adult patients, rather than the femoral vein. 47 (I)

1. If the patient has chronic kidney disease, consider the internal jugular vein or, secondarily, the external jugular vein, weighing benefits and risks for each access site. 22 (V)

C. There is no preferred venous insertion site for a nontunneled CVAD in infants and children to minimize the risk of infection. 11 (V)

D. Use ultrasound (US) in adult patients for vein identification and selection to decrease risks of cannulation failure, arterial puncture, hematoma, and hemothorax (see Standard 22, Vascular Visualization). 46,50-52 (I)

V. Central Venous Access via Tunneled Central Vascular Access Devices and Implanted Ports

A. Collaborate with the health care team and patient in assessment and site selection for the placement of tunneled catheters and implanted ports. Use the subclavicular or medial inframammary sites in children to reduce complications. 23,33-35 (IV)

VI. Peripheral Arterial Access

A. Include as selection criteria from physical assessment the presence of a pulse and presence of distal circulation. 3,56 (I A/P)

B. For adults, the radial artery is the most appropriate access for percutaneous cannulation, with the brachial artery followed by the dorsalis pedis as alternative sites. For pediatric patients, use the radial, posterior tibial, and dorsalis pedis arteries. For adults and children, these sites are preferred over the femoral or axillary sites to reduce the risk of infection. The brachial artery is not used in pediatric patients due to the absence of collateral blood flow. 27,57,58 (III)

1. Prior to puncture of the radial artery, assess the circulation to the hand. Review the medical history (eg, trauma, previous radial artery cannulation, radial artery harvesting); assess for the use of anticoagulants; and perform a physical examination of hand circulation such as assessing radial and ulnar pulses, and performing the Allen test, pulse oximetry, or Doppler flow study (refer to Standard 43, Phlebotomy).

C. Do not administer infusion therapy in peripheral arteries via peripheral arterial catheters; these catheters are used for hemodynamic monitoring, blood gas analysis, and obtaining blood samples. 5,59 (V)

D. Use US in arterial identification and selection to increase first-attempt success (see Standard 22, Vascular Visualization). 60-62 (I)
VII. External Jugular Vein Access

A. Clinicians having validated competency may insert short peripheral catheters, midline catheters, and PICCs using the external jugular vein in patients in acute care settings and in emergency situations when other veins cannot be accessed.3,6,45 (V)

B. When a short peripheral catheter is inserted into the external jugular vein and infusion therapy is expected to exceed 96 hours, collaborate with the LIP for an alternative vascular access site as soon as possible.7,45 (V)

REFERENCES

Note: All electronic references in this section were accessed September 22, 2015.

63. Infusion Nurses Society [position paper]. The role of the registered nurse in the insertion of external jugular peripherally

28. IMPLANTED VASCULAR ACCESS PORTS

Standard

28.1 Placement and removal of an implanted vascular access port are considered surgical procedures and are to be performed by a licensed independent practitioner (LIP) or advanced practice registered nurse (APRN) with validated competency operating within the state’s rules and regulations for professional practice and according to organizational policies, procedures, and/or practice guidelines.

28.2 Implanted vascular access ports are accessed using noncoring safety needles.

28.3 Only implanted vascular access ports and noncoring needles designed for power injection are used with power-injection equipment for radiologic imaging in accordance with manufacturers’ directions for use.

28.4 A sterile dressing is maintained over the access site if the implanted vascular access port remains accessed.

Practice Criteria

A. Confirm that the implanted port has a labeled indication for power injection before using it for this purpose.¹,² (V)

1. Use at least 2 identification methods that may include presence of identification cards, wristbands, or key chains provided by the manufacturer; review operative procedure documentation; and palpate the port.

2. Do not use palpation of the port as the only identification method as not all power-injection-capable implanted vascular access ports have unique characteristics identifiable by palpation.

3. During and after power injection be aware of the potential for catheter rupture, which can lead to extravasation, catheter fragment emboli, and the need for port removal and replacement. Suspect catheter rupture if the patient shows signs of localized swelling or erythema or reports pain (refer to Standard 51, Catheter Damage [Embolism, Repair, Exchange]).

C. Adhere to aseptic technique during implanted port access, including use of sterile gloves and mask.³,⁴ (V, Committee Consensus)

1. Perform hand hygiene before and after examining the site to assess for swelling, erythema, drainage, venous patterns, or discomfort.⁵,⁶ (V)

2. Perform skin antisepsis prior to port access.
 a. Use the preferred skin antisepsic agent of >0.5% chlorhexidine in alcohol solution.⁴,⁷ (I)
 b. If there is a contraindication to alcoholic chlorhexidine, tincture of iodine, an iodophor (povidone-iodine), or 70% alcohol may also be used.⁵ (I)
 c. Allow skin antisepsic agent to fully dry prior to port access.³ (V)

D. Access the implanted vascular access port with the smallest-gauge noncoring needle to accommodate the prescribed therapy.

1. To reduce the risk of needle dislodgment during access, use a noncoring needle of a length that allows the needle to sit flush to the skin and securely within the port.⁷ (V)

2. Consider orienting the bevel of an implanted port access needle in the opposite direction from the outflow channel where the catheter is attached to the port body. In vitro testing demonstrates a greater amount of protein is removed when flushing with this bevel orientation.⁸ (IV)

3. There is insufficient evidence to recommend an optimal time for replacement of the noncoring needle when the implanted vascular access port is used for continuous infusions.⁵ (V)

E. Assess vascular access device (VAD) functionality by using a 10-mL syringe or a syringe specifically designed to generate lower injection pressure (ie, 10-mL diameter syringe barrel), taking note of any resistance (refer to Standard 40, Flushing and Locking).

F. Flush and lock the implanted vascular access port with preservative-free 0.9% sodium chloride (USP) or heparin lock solution (refer to Standard 40, Flushing and Locking).

1. Flush accessed but noninfusing implanted vascular access ports daily.⁹ (IV)

2. There is insufficient evidence to recommend the optimal frequency for flushing an implanted vascular access port that is not accessed for infusion; refer to manufacturers’ directions for use and organizational policy.¹⁰,¹¹ (V)

3. Anticipate use of antimicrobial locking solutions for patients who have a history of catheter-related bloodstream infections (CR-BSIs) (refer to Standard 40, Flushing and Locking).

G. Use a transparent semipermeable membrane (TSM) dressing or gauze dressing that covers the noncoring needle and access site when the port is accessed. Change the TSM dressing every 1-2 days (should be changed daily in CVCs). Change the TSM dressing every 5-7 days.¹²,¹³ (IV)
H. Provide appropriate patient/caregiver education including placement procedure; type of port placed (eg, power injectable, number of lumens); importance of carrying port identification card (eg, in wallet); routine care, including frequency of flushing; expectations of aseptic technique during access; use of only noncoring needles (including appropriate type for power injection); and identification of potential complications and interventions.4,16 (V)

I. Provide appropriate patient/caregiver education for patients who are receiving infusions at home via an accessed port, including checking the dressing daily; how to dress and undress to avoid pulling at the noncoring needle; protecting the site during bathing; making sure women’s bra straps do not rub over the accessed area; immediately reporting any signs or symptoms of pain, burning, stinging, or soreness at the site; and recognizing the importance of stopping the infusion pump and immediately reporting any wetness, leaking, or swelling noted at the site (see Standard 8, Patient Education).17 (V)

REFERENCES

Note: All electronic references in this section were accessed August 26, 2015.

29. HEMODIALYSIS VASCULAR ACCESS DEVICES (VADs)

Standard

29.1 The selection of the most appropriate type of vascular access device (VAD) for hemodialysis occurs in collaboration with the patient/caregiver and the interprofessional team based on the projected treatment plan.

29.2 Placement and removal of a tunneled or implanted hemodialysis VAD, creation of an arteriovenous (AV) fistula, and insertion of an AV graft are considered surgical procedures and will be performed by a licensed independent practitioner (LIP) with validated competency operating within the state’s rules and regulations for professional practice.

29.3 Removal of a temporary nontunneled or nonimplanted hemodialysis VAD is performed either by or upon the order of an LIP in accordance with state licensure rules and regulation and organizational policies.

29.4 Hemodynamic monitoring and venipuncture are not performed on the extremity containing an AV fistula or graft.

Practice Criteria

A. Determine the access method in advance of beginning dialysis. The general order for vascular access preference is fistula, AV graft, and long-term VAD.
The patient/caregiver and interprofessional team should collaborate on the decision to place a hemodialysis VAD or create a means of long-term vascular access for the purpose of hemodialysis.1-7 (III)

B. Use vein preservation techniques for patients who are likely to need vascular access for hemodialysis. Avoid access devices that are associated with thrombosis and central venous stenosis, such as temporary subclavian vein catheters and peripherally inserted central catheters (PICCs).1,2,7-9 (I)

C. When feasible, use a matured AV fistula. Variables such as clinical, anatomical, functional, and pathological issues are under study to identify predictors of fistula maturation.1,2,7,10,11 (IV)

D. Monitor all access devices for signs or symptoms of dysfunction, infection, or other complications at each dialysis session.1,3,9 (V)

E. Do not routinely replace temporary catheters used for dialysis.9 (I)

F. Use povidone-iodine ointment or bacitracin/gramicidin/polymixin ointment at the dialysis catheter exit site when there is no interaction with the catheter material, according to the manufacturer’s directions for use.9 (I)

G. Avoid using a hemodialysis catheter for routine blood sampling, blood transfusions, or other infusion medications. In critically ill patients, a non-cuffed catheter with a medial infusion port may be placed for short-term vascular access for infusion therapy needs. Administer medications through the medial infusion port and not the dialysis lumens. Because multiple lumens increase the risk of infection, limit the duration that a dialysis catheter with a medial infusion port is used.9 (V)

H. Aspirate the locking solution and confirm a blood return before use of a tunneled or nontunneled dialysis catheter.9 (V)

I. Wear sterile gloves and a mask when performing dressing changes for hemodialysis access devices, including AV fistulas and grafts (when dressings are present). Clean gloves can be worn for accessing a tunneled catheter with an established cuff (see Standard 41, Vascular Access Device [VAD] Assessment, Care, and Dressing Changes).2,6,8 (V)

J. Teach patients/caregivers/surrogates how to care for and protect the VAD and to report any signs and symptoms of dysfunction, infection, or other complications pertaining to the access device in use (see Standard 8, Patient Education).1,2,6 (V)

REFERENCES

Note: All electronic references in this section were accessed August 26, 2015.

30. UMBILICAL CATHETERS

Standard

30.1 Placement and removal of an umbilical arterial and venous catheter (UAC and UVC) are performed by licensed clinicians with validated competency, operating within the state’s rules and regulations for professional practice in accordance with organizational policies and procedures.

30.2 The clinical need for the umbilical catheter is assessed on a daily basis and promptly removed when no longer indicated.

Practice Criteria

A. Establish organizational guidelines for appropriate use of UACs and UVCs based on gestational age, birth weight, and severity of illness in an effort to decrease their unnecessary use and associated complications.1-3 (IV)

1. Use UACs for obtaining blood samples and continuous blood pressure monitoring.
D. Place the catheter tip for:
1. VOLUME 39 | NUMBER 1S | JANUARY/FEBRUARY 2016
2. UACs in the thoracic portion of the descending aorta below the renal arteries and above the aortic bifurcation into the common iliac arteries (ie, low position). 12,17-19 (IV)
2. UVCs in the inferior vena cava near the junction with the right atrium.
2. Perform skin antisepsis prior to insertion:
1. Use povidone-iodine, >0.5% chlorhexidine in alcohol solution, or aqueous chlorhexidine solution.
3. Use both aqueous and alcohol-based chlorhexidine with caution in preterm neonates, low-birth-weight neonates, and within the first 14 days of life, due to risks of chemical burns to the skin. Systemic absorption has been reported due to skin immaturity; however, systemic effects are not documented. Studies have not established the safest and most effective chlorhexidine solution in neonates. Use all chlorhexidine antiseptic agents with caution in infants under 2 months of age.
3. Avoid the use of tincture of iodine due to the potential deleterious effect on the neonatal thyroid gland.4,6-11 (I)
C. Determine the length of catheter to be inserted by anatomical measurement of shoulder to umbilicus length, by equations based on body weight, or with other research-based protocols to achieve successful tip placement.12-16 (V)
D. Place the catheter tip for:
1. UVCs in the inferior vena cava near the junction with the right atrium.
2. UACs in the thoracic portion of the descending aorta below the aortic arch (ie, high position) or below the renal arteries and above the aortic bifurcation into the common iliac arteries (ie, low position).12,17-19 (IV)
E. Confirm the catheter tip location by radiography, echocardiography, or ultrasonography before catheter use.
1. For UVC, obtain anteroposterior (AP) radiographic view of the chest and abdomen for tip location at or slightly cephalad to the diaphragm. Use of the cardiac silhouette is reported to be more accurate than positioning based on vertebral bodies. When an AP view is insufficient to identify the catheter pathway and tip location, a lateral or cross-table view may be needed.17,18,20 (IV)
2. For difficult bedside UVC placement or patients with congenital cardiac conditions, fluoroscopy guidance is safe.21 (V)
3. For UAC, obtain AP radiographic view of the chest and abdomen for tip location between the thoracic vertebrae 6 and 10 for high position and between lumbar vertebrae 4 and 5 for low position.27 (V)
4. Ultrasound imaging using parasternal long- and short-axis views for UVC tip location compares favorably to radiography. Injection of normal saline through the catheter may assist in identifying the exact tip location. However, ultrasound will not rule out loops or curls in the catheter pathway.18,22,23 (IV)
5. Neonatal echocardiography may be superior to chest and abdominal radiography for identifying malpositioned catheters or in extremely low-birth-weight neonates.24,25 (V)
F. Choose a method for securing the UVC and UAC based on promoting skin integrity, decreasing complications, and ease of use. There is a lack of evidence demonstrating the best method.26 (IV)
G. Do not use topical antibiotic ointment or creams on umbilical sites due to the risk of fungal infections and antimicrobial resistance.4 (I)
H. Monitor for signs and symptoms of potential complications including, but not limited to, bleeding from the umbilical stump; extravasation; hemorrhage; air embolism; infection; thrombosis; pleural effusion; pericardial effusion; cardiac tamponade; cardiac arrhythmias; liver damage; and peripheral vascular constriction. Anticipate the use of ultrasound or echocardiogram for diagnostic purposes.27-31 (IV)
I. Remove umbilical catheters promptly when no longer needed or if a complication occurs.
1. Consider limiting UVC dwell time to 7 to 14 days; risks of infection are increased with longer dwell times. UVC removal at 7 days followed by insertion of a peripherally inserted central catheter (PICC) for continued infusion therapy is one strategy to reduce central line-associated bloodstream infection.4,30,32,33 (III)
2. Consider limiting UAC dwell time to no more than 5 days.4,34,35 (IV)
3. Remove umbilical catheters slowly over several minutes after placing an umbilical tie around the stump. For removal of UACs, the final 5 cm of catheter length should be slowly withdrawn at 1 cm per minute to minimize arterial spasm.31 (V)

REFERENCES

Note: All electronic references in this section were accessed September 22, 2015.

31. APHERESIS CATHETERS

Standard

31.1 The selection of the most appropriate type of vascular access device (VAD) for therapeutic apheresis occurs in collaboration with the patient/caregiver and the interprofessional team based on the projected treatment plan.

Practice Criteria

A. Consider the following when choosing the most appropriate VAD for therapeutic apheresis: the type
of apheresis procedure (centrifugation-based or filter-based systems); the patient’s vascular anatomy; acuity; frequency and treatment duration; and underlying disease state.1-3 (IV)
B. Peripheral or central VADs are recommended for therapeutic apheresis as follows:
1. Use of 16- to 18-gauge peripheral catheters placed in antecubital veins for adults. Peripheral vein access is not recommended in young children (< 30 kg) due to small veins but may be possible with older children and adolescents. Peripheral veins are not appropriate for filter-based apheresis systems.1,3 (IV)
2. Use a nontunneled or tunneled cuffed central VAD with a catheter size of at least 11.5 Fr for adults.3,3 (IV)
3. Implanted vascular access ports are used less commonly.1,4 (IV)
4. Peripherally inserted central catheters should not be used for therapeutic apheresis due to small internal diameters and inability to accommodate blood flow rates.3 (IV)
5. Arteriovenous (AV) fistulae and AV grafts may be placed for long-term treatment.1-3 (IV)

REFERENCES

32. LOCAL ANESTHESIA FOR VASCULAR ACCESS DEVICE (VAD) PLACEMENT AND ACCESS

Standard
32.1 The clinician considers local anesthesia for vascular access device (VAD) placement and access based upon assessment of patient condition, needs, risks, benefits, and anticipated discomfort of the procedure.
32.2 When local anesthesia is ordered or necessary, use the agent and method that is least invasive and carries the least risk for adverse reactions.
32.3 When administering a local anesthetic, assess the patient and intervene for potential allergic reactions, tissue damage, or inadvertent injection of the drug into the vascular system.
32.4 Protocols for the use of local anesthesia for VAD placement are established in organizational policies, procedures, and/or practice guidelines.

Practice Criteria
A. Consider local anesthetic agents for painful VAD placement or access including, but not limited to, topical vapocoolant sprays, topical transdermal agents, intradermal lidocaine, and pressure-accelerated lidocaine.1-11 (I)
B. Use the most effective and available local anesthetic method and/or agent, considering time to peak effectiveness, as well as adjunctive and less invasive anxiolytic, cognitive, behavioral, and complementary therapies, to reduce pain and discomfort prior to each painful VAD puncture or procedure in children, some adults, and for large-bore vascular access in the hand (eg, 16 gauge).1,2,5,9,12-17 (I)

REFERENCES

33. VASCULAR ACCESS SITE PREPARATION AND DEVICE PLACEMENT

Standard

33.1 A new, sterile vascular access device (VAD) is used for each catheterization attempt.

33.2 Aseptic technique is adhered to during all aspects of VAD placement.

33.3 Proper tip location for central vascular access devices (CVADs) is verified prior to use.

Practice Criteria

I. General

A. Provide patient education prior to inserting a VAD (refer to Standard 8, Patient Education).

B. Obtain informed consent according to organizational policy or procedure (refer to Standard 9, Informed Consent).

C. Ensure that the intended VAD site is visibly clean prior to application of an antiseptic solution; when visible soil is present, cleanse the intended VAD insertion site prior to application of antiseptic solution(s).

D. Remove excess hair at the insertion site if needed to facilitate application of VAD dressings; use single-patient-use scissors or disposable-head surgical clippers; do not shave as this may increase the risk for infection (although research is limited).

E. Immediately remove the VAD and promptly notify the licensed independent practitioner (LIP) in the following situations:

1. If nerve damage is suspected, such as when the patient reports paresthesias (numbness or tingling) related to VAD insertion (refer to Standard 47, Nerve Injuries).

2. If an artery is inadvertently accessed, apply pressure to the peripheral site. Inadvertent arterial puncture during CVAD placement is a life-threatening complication requiring immediate intervention. Treatment options include open operative approach and repair and, more commonly, endovascular management (see Standard 53, Central Vascular Access Device [CVAD] Malposition).

F. Make no more than 2 attempts at short peripheral intravenous access per clinician, and limit total attempts to no more than 4. Multiple unsuccessful attempts cause patient pain, delay treatment, limit future vascular access, increase cost, and increase the risk for complications. Patients with difficult vascular access require a careful assessment of VAD needs and collaboration with the health care team to discuss appropriate options.

G. Dedicate a tourniquet to only a single patient.

II. Short Peripheral and Midline Catheters

A. Consider implementation of specialized infusion teams to improve success rates with peripheral intravenous (IV) insertion (refer to Standard 4, Infusion Team).

B. Consider use of visualization technologies to aid in vein identification and selection in patients with difficult venous access (refer to Standard 22, Vascular Visualization).

C. Use an appropriate method to promote vascular distention when placing short peripheral catheters. These include:

1. Use of a blood pressure cuff or tourniquet applied in a manner to impede venous flow while maintaining arterial circulation. Loosely apply tourniquet or avoid its use in patients who bruise easily, are at risk for bleeding, have compromised circulation, and/or have fragile veins.
2. Use of gravity (positioning the extremity lower than the heart for several minutes), having the patient open and close her or his fist, and lightly stroking the vein downward.1,2,7 (I/A/P)

3. Use of warmth. The use of dry heat has been found to increase the likelihood of successful peripheral catheter insertion.11-14 (IV)

D. Perform skin antisepsis using the preferred skin antisectic agent of >0.5% chlorhexidine in alcohol solution. If there is a contraindication to alcoholar chlorhexidine solution, tincture of iodine, an iodophor (povidone-iodine), or 70% alcohol may also be used. Use chlorhexidine with caution in premature infants and infants under 2 months of age due to risks of skin irritation and chemical burns. Allow the antisectic agent to fully dry before insertion.3,15-17 (I)

E. Adhere to and maintain aseptic technique with short peripheral catheter insertion:
1. Use a new pair of disposable, nonsterile gloves in conjunction with a “no-touch” technique for peripheral IV insertion, meaning that the insertion site is not palpated after skin antisepsis.3,20 (V)

2. Consider increased attention to aseptic technique, including strict attention to skin antisepsis and the use of sterile gloves, when placing short peripheral catheters. While there is a lack of evidence comparing bloodstream infection (BSI) rates with or without use of sterile gloves, longer dwell times have raised concerns regarding risk for BSI. Furthermore, contamination of nonsterile gloves is documented.21-23 (V, Committee Consensus)

F. Consider the use of maximal sterile barrier precautions with midline catheter insertion.24-26 (V)

G. Use the safest available insertion technique, including the Seldinger, modified Seldinger technique (MST), or new techniques that eliminate multiple steps (eg, alterations to the Seldinger technique) for midline catheter placement, to reduce the risk for insertion-related complications such as air embolism, guidewire loss, embolism, inadvertent arterial cannulation, and bleeding.26-31 (V)

H. Ensure appropriate midline catheter tip location:
1. Adults and older children: at the level of the axilla and distal to the shoulder.24,26,32 (V)

2. Neonate/pediatric scalp vein placement: jugular vein above the clavicle.32 (V)

3. Neonate/pediatric lower extremity vein placement (before walking age): in the leg with the tip below the inguinal crease.32 (V)

III. Central Vascular Access Device (CVAD)
A. Implement the central line bundle when placing CVADs, which includes the following interventions:

2. Neonate/pediatric scalp vein placement: jugular vein above the clavicle.32 (V)

3. Neonate/pediatric lower extremity vein placement (before walking age): in the leg with the tip below the inguinal crease.32 (V)
IV. Arterial Catheters

A. Consider use of visualization technologies to aid in artery identification and selection (refer to Standard 22, Vascular Visualization).

B. Perform skin antisepsis using the preferred skin antiseptic agent of >0.5% chlorhexidine in alcohol solution. If there is a contraindication to alcoholic chlorhexidine solution, tincture of iodine, an isoiodophor (povidone-iodine), or 70% alcohol may also be used.3,41-42 (I)

C. Wear a cap, mask, sterile gloves, and eyewear, and use a large, sterile fenestrated drape when placing a peripheral arterial catheter.3,41-42 (II)

D. Employ maximal sterile barrier precautions when placing pulmonary artery and arterial catheters in the axillary or femoral artery.3,41-42 (II)

REFERENCES

Note: All electronic references in this section were accessed August 26, 2015.

27. Deutsch GB, Sathyarayana SA, Singh N, Nicastro J. Ultrasound guided placement of midline catheters in the surgical intensive

Section Six: Vascular Access Device (VAD) Management

Section Standards

I. To ensure patient safety, the clinician is competent in vascular access device (VAD) management, including knowledge of anatomy, physiology, and VAD management techniques aimed at maintaining vascular access and reducing risk of complications.

II. Indications and protocols for VAD management are established in organizational policies, procedures, and/or practice guidelines and according to manufacturers’ directions for use.

34. NEEDLELESS CONNECTORS

Standard

34.1 Use a luer-locking mechanism to ensure a secure junction when attaching needleless connectors to a vascular access device (VAD) hub or access site.

34.2 Disinfect needleless connectors prior to each entry into the device.

34.3 Use aseptic no-touch technique to change the needleless connector.

34.4 Access needleless connectors only with a sterile device.

Practice Criteria

A. The need for a needleless connector placed between the VAD hub and the administration set used for continuous fluid infusion is unknown. The primary purpose of needleless connectors is to protect health care personnel by eliminating needles and subsequent needlestick injuries when attaching administration sets and/or syringes to the VAD hub or injection site for intermittent infusion.1-3 (Regulatory)

1. Avoid using a needleless connector for rapid flow rates of crystalloid solutions and red blood cells, as their presence can greatly reduce flow rates.4 (IV)

B. Consider use of an extension set between the peripheral catheter and needleless connector to reduce catheter manipulation (refer to Standard 36, Add-on Devices).

C. Recognize that needleless connectors are potential sites for intraluminal microbial contamination and require careful adherence to infection prevention practices. There is no consensus on the design or type of needleless connector to prevent or reduce VAD-related bloodstream infection.3,5-8 (IV)

D. Needleless connectors have different internal mechanisms and fluid pathways. The device design that produces the least amount of thrombotic VAD lumen occlusion remains controversial and requires further study.9-13 (IV)

E. Follow manufacturers’ directions for the appropriate sequence of catheter clamping and final syringe disconnection to reduce the amount of blood reflux into the VAD lumen and, thus, the incidence of intraluminal thrombotic occlusion. The sequence for flushing, clamping, and disconnecting the syringe depends upon the internal mechanism for fluid displacement. Standardizing the type of needleless connector within the organization may reduce risk for confusion about these steps and improve outcomes.14,15 (V)

F. Perform a vigorous mechanical scrub for manual disinfection of the needleless connector prior to each VAD access and allow it to dry.

1. Acceptable disinfecting agents include 70% isopropyl alcohol, iodophors (ie, povidone-iodine), or >0.5% chlorhexidine in alcohol solution.7,16 (II)

2. Length of contact time for scrubbing and drying depends on the design of the needleless connector and the properties of the disinfecting agent. For
70% isopropyl alcohol, reported scrub times range from 5 to 60 seconds with biocide activity occurring when the solution is wet and immediately after drying. More research is needed for other agents or combinations of agents due to conflicting reports regarding the optimal scrub time.3,17,18 (II)

3. After removal, multiple accesses of the VAD may be required to administer a medication (eg, flush syringes and administration sets) and require additional disinfection before each entry. Scrubbing time, technique, and agents for disinfection of the needleless connector between subsequent connections are unknown due to a lack of research. Consider using a vigorous 5- to 15-second scrub time with each subsequent entry into the VAD, depending upon the needleless connector design.25,30 (Committee Consensus)

4. Use a stopcock or manifold with an integrated needleless connector rather than a solid cap due to contamination from personnel hands and the environment. Replace the stopcock with a needleless connector as soon as clinically indicated.31-33 (III)

H. Change the needleless connector no more frequently than 96-hour intervals. Changing on a more frequent time interval adds no benefit and has been shown to increase the risk of CLABSI.

1. When used within a continuous infusion system, the needleless connector is changed when the primary administration set is changed (eg, 96 hours).

2. For peripheral catheters with dwell times longer than 96 hours, there are no studies on changing the attached needleless connector/extension set.

3. Additionally, the needleless connector should be changed in the following circumstances: if the needleless connector is removed for any reason; if there is residual blood or debris within the needleless connector; prior to drawing a sample for blood culture from the VAD; upon contamination; per organizational policies, procedures, and/or practice guidelines; or per the manufacturer’s directions for use (see Standard 49, Infection).7,34,35 (IV)

I. Ensure that disinfecting supplies are readily available at the bedside to facilitate staff compliance with needleless connector disinfection.14,36 (V)

REFERENCES

Note: All electronic references in this section were accessed August 27, 2015.

35. FILTRATION

Standard

35.1 Parenteral nutrition solutions are filtered using an in-line or add-on filter appropriate to the type of solution.

35.2 Blood and blood components are filtered using an in-line or add-on filter appropriate to the prescribed component.

35.3 Intraspinal infusion solutions are filtered using a surfactant-free, particulate-retentive, and air-eliminating filter.

35.4 Medications withdrawn from glass ampoules are filtered using a filter needle or filter straw.

Practice Criteria

A. Use filters adhering to manufacturers’ directions for use and filtration requirements of the infusion therapy solution or medication.¹ (V)

1. Filters are contraindicated for use with certain medications that would be retained on the filter material; consult with pharmacy or published drug resources regarding filtration indications.¹ (V)

2. Avoid filters when administering very small drug volumes as drug retention may seriously decrease the volume of medication delivered to the patient.¹ (V)

3. Recognize that there is evolving evidence documenting the effect of particulate matter (eg, rubber, glass, latex) on capillary endothelium and...
the effect of microbubbles of air that may cause cerebral and pulmonary ischemia; use of particulate-retentive and air-eliminating filters can prevent potential damage from air/particulates (eg, cardiac anomalies with right-to-left shunting).\(^1,3,5\) (V)

4. Use air-eliminating filters during treatment of adults with Eisenmenger’s syndrome (heart defect that causes right-to-left shunting) as exclusion of air bubbles in administration sets is recommended as essential.\(^6\) (I A/P)

B. Change add-on filters to coincide with administration set changes; use a primary administration set with a preattached, in-line filter whenever possible to reduce tubing manipulation and risks of contamination, misuse, and accidental disconnection/miss-connection.\(^1\) (V)

C. Locate add-on bacteria- and particulate-retentive and air-eliminating membrane filters as close to the vascular access device (VAD) hub as possible.\(^1\) (V)

D. Ensure that electronic infusion device (EID) pressure does not exceed the pounds per square inch (psi) rating of the filter when an EID is used.\(^1\) (V)

E. Filter parenteral nutrition solutions without lipids using a 0.2-micron filter and lipid-containing emulsions (3-in-1) using a 1.2-micron filter, and change filters every 24 hours.

1. When lipids are infused separately from dextrose/amino acids, use a 0.2-micron filter for the dextrose/amino acid solution and infuse the lipid emulsion below the filter (eg, during “piggyback”).

2. Separate lipid emulsions may not require filtration; consult manufacturers’ directions for use. If required, a 1.2-micron filter is used on the separate lipid emulsion (refer to Standard 61, Parenteral Nutrition).

F. Filter blood and blood components using a filter designed to remove blood clots and harmful particles; standard blood administration sets include a 170- to 260-micron filter. Change the transfusion administration set, and filter after each unit or no less often than every 4 hours (refer to Standard 62, Transfusion Therapy).

G. Filter intraspinal infusion medications using a surfactant-free 0.2-micron filter (refer to Standard 54, Intraspinal Access Devices).

H. Use a filter needle or filter straw to withdraw any medication from glass ampoules and replace the filter needle or filter straw with a new sterile needle after the medication is withdrawn from the ampoule; recognize that glass fragments may enter the ampoule when opened (refer to Standard 17, Compounding and Preparation of Parenteral Solutions and Medications).

I. Consider fluid and medication filtration in critically ill patients; filter use was associated with a significant reduction in overall complications for patients in pediatric intensive care units, including a significant reduction in systemic inflammatory response syndrome (SIRS); a 0.2-micron filter was used for crystalline solutions and a 1.2-micron filter was used for lipid-containing admixtures.\(^7,8\) (III)

J. There is insufficient evidence to support the routine use of in-line intravenous particulate filters for non-blood/blood component therapy in peripheral intravenous catheters for the purpose of preventing infusion-related phlebitis.\(^9\) (I)

REFERENCES

Note: All electronic references in this section were accessed August 28, 2015.

36. ADD-ON DEVICES

Standard

36.1 Add-on devices are used only when clinically indicated for a specific purpose and in accordance with manufacturers’ directions for use.

36.2 Add-on devices are of luer-lock or integrated design to ensure a secure junction, reduce manipulation, and minimize the risk of disconnection.
Practice Criteria

A. Consider the use of add-on devices (eg, single- and multilumen extension sets, manifold sets, extension loops, solid cannula caps, needleless connectors, inline filters, manual flow-control devices and stopcocks) only for clinical indications. When indicated, preferentially use systems that minimize manipulation and reduce multiple components, such as integrated extension sets (see Standard 34, Needleless Connectors).\(^1\)\(^4\) (IV)

1. Clinical indications may include adding length, enabling filtration capabilities, or enhancing function of the infusion system (ie, adding an extension to decrease movement/manipulation at the short peripheral catheter hub).\(^1\)\(^2\) (V)

2. Consider that the potential for contamination exists with all add-on devices. Limit the use of add-on devices whenever possible to decrease the number of manipulation episodes, accidental disconnections or misconnections, and costs.\(^1\)\(^9\) (IV)

B. Ensure that all add-on devices are compatible with the administration system to prevent the risk of leaks, disconnections, or misconnections.\(^5\)\(^6\) (V)

C. Change the add-on device with new vascular access device (VAD) insertion, with each administration set replacement, or as defined by the organization, and whenever the integrity of the product is compromised or suspected of being compromised.\(^1\)\(^2\) (V)

D. Avoid the use of stopcocks due to the increased risk of infection.

1. Propofol anesthesia may increase risk for postoperative infection because of microorganism growth in stopcock dead spaces. Bacterial contamination of the patient’s skin, the provider’s hands, and the environment contribute to infection risk associated with stopcocks.\(^10\)\(^11\) (IV)

2. Use a stopcock or manifold with an integrated needleless connection rather than a solid cap or replace the stopcock with a needleless connector to reduce stopcock contamination.\(^12\)\(^13\) (IV)

REFERENCES

Note: All electronic references in this section were accessed August 28, 2015.

37. VASCULAR ACCESS DEVICE (VAD) STABILIZATION

Standard

37.1 Stabilize and secure vascular access devices (VADs) to prevent VAD complications and unintentional loss of access.

37.2 Methods used to stabilize the VAD will not interfere with assessment and monitoring of the access site and will not impede vascular circulation or delivery of the prescribed therapy.

Practice Criteria

A. Consider use of an engineered stabilization device (ESD) to stabilize and secure VADs as inadequate...
stabilization and securement can cause unintentional dislodgment and complications requiring premature VAD removal. ESDs promote consistent practice among all clinicians, reduce VAD motion that can lead to complications, reduce interruption of needed infusion therapy, and may decrease cost of care.

1. The effect of adhesive ESDs on peripheral catheter complication rates is unclear due to the limited number and quality of randomized trials.

2. Studies on central vascular access devices (CVADs) are limited to small populations or descriptive study design.

3. Many devices merge the interventions of catheter stabilization with the dressing of the VAD, yet there is an absence of data for these combination devices.

4. Decisions about the most appropriate method for VAD stabilization and securement include patient age, skin turgor and integrity, previous adhesive skin injury, and any type of drainage from the insertion site.1,6 (IV)

B. Avoid use of tape or sutures, as they are not effective alternatives to an ESD. Rolls of nonsterile tape can become contaminated with pathogenic bacteria, although its contribution to VAD infection has not been quantified. Sutures are associated with needle-stick injury, in addition to supporting the growth of biofilm and increasing the risk of catheter-related bloodstream infection.7-10 (II, Regulatory)

C. Do not rely on VAD dressings (ie, standard, nonbordered transparent semipermeable membrane [TSM] dressings, gauze and tape dressings) as a means for VAD stabilization as there is insufficient evidence supporting their benefits as stabilization devices.11 (I)

D. For peripheral catheters, consider 2 options for catheter stabilization: (1) an integrated stabilization feature on the peripheral catheter hub combined with a bordered polyurethane securement dressing or (2) a standard round hub peripheral catheter in combination with an adhesive ESD. Both have demonstrated equivalent complication rates, although complication rates for both types were not greatly reduced with either type of ESD.12,13 (III)

1. Use of a bordered polyurethane securement dressing alone on a peripheral catheter with a traditional hub allowed more peripheral catheters to reach 72 hours of dwell time with fewer needing to be restarted; however, more data are needed.14 (V)

2. Cyanoacrylate tissue adhesives for securement have been studied in vitro, in animals, and in small pilot trials of peripheral venous and arterial catheters. Tissue adhesive plus a standard transparent dressing have shown a slight trend toward reduction in catheter failure with these adhesives in combination with a standard transparent membrane dressing; however, larger trials are needed to confirm these findings and identify patients for whom this might not be suitable.3,15-17 (III)

E. Use adhesive-based ESDs with peripherally inserted central catheters (PICCs) as they may reduce risk of infection and catheter dislodgment and are considered to be safer than sutures. Sutures were associated with fewer complications when compared to use of tape with PICCs in pediatric patients in a randomized, controlled trial that excluded use of stabilization devices.3,18-20 (III)

F. Subcutaneous ESDs have been successful in stabilizing PICCs and CVADs inserted through the internal jugular vein of adults. Patient outcomes and patient and inserter satisfaction have been favorable; however, additional studies with other CVADs are needed.21-23 (V)

G. For CVADs, the use of staples as an alternative to sutures reduces exposure to contaminated sharps and shortens securement time but increases pain on application and removal and does not adequately secure the CVAD. A system using a special catheter clamp designed for staple use demonstrated significantly less time for securing the VAD in a variety of insertion sites, but additional VAD outcome data are needed.24-26 (IV)

H. Do not use rolled bandages, with or without elastic properties, to secure any type of VAD because they do not adequately secure the VAD, can obscure signs and symptoms of complications, and can impair circulation or the flow of infusion. The presence of skin disorders that contradict the use of medical adhesives (ie, pediatric epidermolysis bullosa, toxic epidermal necrolysis) may necessitate the use of tubular gauze mesh rather than adhesive ESD.5 (V)

I. Assess the integrity of the ESD with each dressing change and change the ESD according to the manufacturer’s directions for use. Remove adhesive ESDs during the dressing change to allow for appropriate skin antisepsis and apply a new ESD. An ESD designed to remain in place for the life of the VAD (eg, sutures, subcutaneous ESD) may need to be removed and replaced if appropriate stabilization is no longer being achieved.3,22,23,27 (IV)

J. Be aware of the risk of medical adhesive-related skin injury (MARSI) associated with the use of adhesive-based ESDs.

1. Assess skin when the device is changed; anticipate potential risk for skin injury due to age, joint movement, and presence of edema.

2. Apply barrier solutions to skin exposed to the adhesive dressing to reduce the risk of MARSI. Compound tincture of benzoin should not be used due to increased risk of MARSI because it may increase the bonding of adhesives to skin,
causing skin injury when the adhesive-based ESD is removed.8 (I)
K. Never readvance a dislodged VAD into the vein. After assessment of the tip location, the infusion therapy, and other influencing factors, the VAD could be stabilized at the current location; however, removal, reinsertion at a new site, or exchange could be the most appropriate intervention.28 (V)

REFERENCES
Note: All electronic references in this section were accessed October 5, 2015.

38. JOINT STABILIZATION

Standard
38.1 Joint stabilization devices, such as an arm board or splint, are used to facilitate infusion delivery and maintain device patency and are not considered restraints.
38.2 A joint stabilization device is a single-patient-use device.
Practice Criteria

A. Joint stabilization devices may be used to facilitate infusion delivery, maintain device patency, and minimize complications.1,2 (III)

B. The joint stabilization device is:
 1. Padded as needed and supports the area of flexion (eg, hand, arm, elbow, foot) in order to maintain a functional position.3-5 (I A/P)
 2. Applied in a manner that permits visual inspection and assessment of the vascular access site and vascular pathway and does not exert such pressure as to cause circulatory constriction, pressure ulcers, skin impairment, or nerve damage in the area of flexion or under the device.6-12 (IV)
 3. Considered when a short peripheral catheter is placed in the antecubital fossa. This site is not recommended, but if a short peripheral catheter is present, the joint is stabilized.13 (V)
 4. Removed periodically for assessment of circulatory status, range of motion and function, and skin integrity.3-6,10,14 (I A/P)

C. Wooden tongue depressors as joint stabilization devices should not be used in preterm infants or immunocompromised individuals.15-17 (IV)

REFERENCES

39. SITE PROTECTION

Standard

39.1 The use of site protection and/or physical immobilization devices to protect vascular access devices (VADs) or VAD sites, and their proper application and patient monitoring, are established in organizational policies, procedures, and/or practice guidelines.

39.2 The use of physical immobilization devices (ie, restraints) to protect VAD sites is not routinely implemented and is avoided whenever possible.

Practice Criteria

A. Specific patient populations including pediatric, elderly, or those with cognitive dysfunction are at risk of accidental VAD dislodgment or patient removal of the VAD. Consider VAD site or line protection methods (such as clear plastic domes) for the duration of the VAD, and if all other measures have been tried or have failed, physical immobilization devices (such as soft devices restraining a hand or hands). All patients may need temporary VAD site protection from water, other contaminants, or movement due to activities of daily living.1-13 (V)

1. Select a site protection method or immobilization device based on an assessment of the patient’s physical, behavioral, cognitive, and psychological status.1,2,14-15 (V)

2. Use site protection methods or immobilization devices in a manner that permits visual inspection and assessment of the vascular access site
and vascular pathway and does not exert such pressure as to cause circulatory constriction, pressure ulcers, skin impairment, or nerve damage under the device and in accordance with manufacturers’ directions for use. Physical immobilization devices should be distal to the VAD site. The site protection method or selected immobilization device should not interfere with the prescribed infusion rate, delivery method, ability to assess the vascular access site, or catheter stabilization/securement.2,6,15,19 (I A/P)

3. Rigid site protection devices and all immobilization devices should be removed at established intervals to allow assessment of the extremity’s circulatory status and provide an opportunity for supervised range-of-motion activities.15-19 (I A/P)

4. Regularly assess patient safety without the physical immobilization device as to its need. The physical immobilization device should be removed as soon as the patient’s condition allows.8,16,20-22 (V, Regulatory)

B. Educate the patient, caregiver, or surrogate on the need for and appropriate use of physical immobilization devices (refer to Standard 8, Patient Education).

C. Document, at a minimum, the rationale for the physical immobilization device; type and location of the immobilization device; release and reapplication of the device; site and circulatory assessment; any complications caused by the immobilization device; patient’s response to the immobilization device; reassessment of the need for the immobilization device; patient education; and removal of the device.23,24 (V, Regulatory)

REFERENCES

Note: All electronic references in this section were accessed August 31, 2015.

8. The Joint Commission (TJC). Hospital-Provision of Care, Treatment, and Services: PC.03.02.01. Oakbrook Terrace, IL: TJC; 2015.

40. FLUSHING AND LOCKING

Standard

40.1 Vascular access devices (VADs) are flushed and aspirated for a blood return prior to each infusion to assess catheter function and prevent complications.

40.2 VADs are flushed after each infusion to clear the infused medication from the catheter lumen, thereby reducing the risk of contact between incompatible medications.

40.3 The VAD is locked after completion of the final flush to decrease the risk of intraluminal occlusion and catheter-related bloodstream infection (CR-BSI), depending on the solution used.

Practice Criteria

A. Use single-dose systems (eg, single-dose vials or prefilled labeled syringes) for all VAD flushing and locking.

1. Commercially available prefilled syringes may reduce the risk of CR-BSI and save staff time for syringe preparation.1-3 (IV)

2. If multiple-dose vials must be used, dedicate a vial to a single patient (see Standard 49, Infection).4 (V)

3. Do not use intravenous (IV) solution containers (eg, bags or bottles) as a source for obtaining flush solutions.3-6 (IV)

4. Inform patients that disturbances in taste and odor may occur with prefilled flush syringes and may be related to several causes including systemic conditions (eg, diabetes, Crohn’s disease), medications (eg, antineoplastics), and radiation. Leaching of substances from the plastic syringe into the saline has been reported, although it is not thought to be harmful to health.7-9 (II)

B. Perform disinfection of connection surfaces (ie, needleless connectors, injection ports) before flushing and locking procedures (refer to Standard 34, Needleless Connectors).

C. Flush all VADs with preservative-free 0.9% sodium chloride (USP).

1. Use a minimum volume equal to twice the internal volume of the catheter system (eg, catheter plus add-on devices). Larger volumes (eg, 5 mL for peripheral VAD, 10 mL for central vascular access devices [CVADs]) may remove more fibrin deposits, drug precipitate, and other debris from the lumen. Factors to consider when choosing the flush volume include the type and size of catheter, age of the patient, and type of infusion therapy being given. Infusion of blood components, parenteral nutrition, contrast media, and other viscous solutions may require larger flush volumes.10 (IV)

2. If bacteriostatic 0.9% sodium chloride is used, limit flush volume to no more than 30 mL in a 24-hour period to reduce the possible toxic effects of the preservative, benzyl alcohol.11 (V)

3. Use only preservative-free solutions for flushing all VADs in neonates to prevent toxicity.12 (V)

4. Use 5% dextrose in water followed by preservative-free 0.9% sodium chloride (USP) when the medication is incompatible with sodium chloride. Do not allow dextrose to reside in the catheter lumen as it provides nutrients for biofilm growth.13 (V)

5. Do not use sterile water for flushing VADs.14 (V)

D. Assess VAD functionality by using a 10-mL syringe or a syringe specifically designed to generate lower injection pressure (ie, 10-mL-diameter syringe barrel), taking note of any resistance.

1. During the initial flush, slowly aspirate the VAD for blood return that is the color and consistency of whole blood, which is an important component of assessing catheter function prior to administration of medications and solutions (refer to Standard 48, Central Vascular Access Device [CVAD] Occlusion; Standard 53, Central Vascular Access Device [CVAD] Malposition).

2. Do not forcibly flush any VAD with any syringe size. If resistance is met and/or no blood return noted, take further steps (eg, checking for closed clamps or kinked sets, removing dressing, etc.) to locate an external cause of the obstruction. Internal causes may require diagnostic tests, including, but not limited to, a chest radiograph to confirm tip location and mechanical causes (eg, pinch-off syndrome), color duplex ultrasound, or fluoroscopy to identify thrombotic causes (see Standard 52, Central Vascular Access Device [CVAD]-Associated Venous Thrombosis; Standard 53, Central Vascular Access Device [CVAD] Malposition).10 (IV)

3. After confirmation of patency by detecting no resistance and the presence of a blood return, use syringes appropriately sized for the medication being injected. Do not transfer the medication to a larger syringe.3,15 (V)

4. Do not use prefilled flush syringes for dilution of medications. Differences in gradation markings, an unchangeable label on prefilled syringes,
I. Lock CVADs with either heparin 10 units per mL or preservative-free 0.9% sodium chloride (USP) at the same rate of injection as the medication. Use an amount of flush solution to adequately clear the medication from the lumen of the administration set and VAD.3 (V)

E. Following the administration of an IV push medication, flush the VAD lumen with preservative-free 0.9% sodium chloride (USP) at the same rate of injection as the medication. Use an amount of flush solution to adequately clear the medication from the lumen of the administration set and VAD.3 (V)

F. Use positive-pressure techniques to minimize blood reflux into the VAD lumen.

1. Prevent syringe-induced blood reflux by leaving a small amount (eg, 0.5-1 mL) of flush solution in a traditional syringe (ie, not a prefilled syringe) to avoid compression of the plunger rod gasket or by using a prefilled syringe designed to prevent this type of reflux.10,17 (IV)

2. Prevent disconnection reflux by using the appropriate sequence for flushing, clamping, and disconnection determined by the type of needleless connector being used (refer to Standard 34, Needleless Connectors).

3. Consider using pulsatile flushing technique. In vitro studies have shown that 10 short boluses of 1 mL interrupted by brief pauses may be more effective at removing solid deposits (eg, fibrin, drug precipitate, intraluminal bacteria), compared to continuous low-flow techniques. Clinical studies are needed to provide more clarity on the true effect of this technique.10,18 (IV)

4. When feasible, consider orienting the bevel of an implanted port access needle in the opposite direction from the outflow channel where the catheter is attached to the port body. In vitro testing demonstrates a greater amount of protein is removed when flushing with this bevel orientation.19 (IV)

G. Lock short peripheral catheters immediately following each use.

1. In adults, use preservative-free 0.9% sodium chloride (USP) for locking.10,20-24 (I)

2. In neonates and pediatrics, use heparin 0.5 units to 10 units per mL or preservative-free 0.9% sodium chloride (USP). Outcome data in these patient populations are controversial.25,26 (II)

3. For short peripheral catheters not being used for intermittent infusion, consider locking once every 24 hours.27 (III)

H. There is insufficient evidence to recommend the solution for locking midline catheters.

I. Lock CVADs with either heparin 10 units per mL or preservative-free 0.9% sodium chloride (USP), according to the directions for use for the VAD and needleless connector.

1. Establish a standardized lock solution for each patient population, organization-wide.28,29 (V)

2. Randomized controlled trials have shown equivalent outcomes with heparin and sodium chloride lock solutions for multiple-lumen nontunneled CVADs, peripherally inserted central catheters (PICCs), and implanted ports while accessed and when the access needle is removed. There is insufficient evidence to recommend one lock solution over the other.30-33 (I)

3. Use heparin or preservative-free 0.9% sodium chloride (USP) for locking CVADs in children.29 (II)

4. Consider using heparin 10 units per mL for locking PICCs in home care patients.34 (III)

5. Volume of the lock solution should equal the internal volume of the VAD and add-on devices plus 20%. Flow characteristics during injection will cause overspill into the bloodstream. Lock solution density is less than whole blood, allowing leakage of lock solution and ingress of blood into the catheter lumen when the CVAD tip location is higher than the insertion site.10,33-37 (IV)

6. Change to an alternative locking solution when the heparin lock solution is thought to be the cause of adverse drug reactions from heparin; when heparin-induced thrombocytopenia and thrombosis (HITT) develops; and when there are spurious laboratory studies drawn from the CVAD that has been locked with heparin. High concentrations of heparin used in hemodialysis catheters could lead to systemic anticoagulation. Heparin-induced thrombocytopenia (HIT) has been reported with the use of heparin lock solutions, although the exact rates are unknown (see Standard 43, Phlebotomy).11,38 (II)

7. Monitoring platelet counts for HIT is not recommended in postoperative and medical patients receiving only heparin in the form of a catheter lock solution due to a very low incidence of HIT of 1% or less (see Standard 52, Central Vascular Access Device [CVAD]-Associated Venous Thrombosis).38 (II)

8. Because of conflicts with religious beliefs, inform patients when using heparin derived from animal products (eg, porcine, bovine), and obtain consent. Use preservative-free 0.9% sodium chloride (USP) instead of heparin when possible.39 (V)

J. Lock hemodialysis CVADs with heparin lock solution 1000 units/mL, 4% citrate, or antimicrobial lock solutions. Use recombinant tissue plasminogen activator to lock hemodialysis catheters once per week as a strategy to reduce CR-BSI.40-42 (I)

K. Lock apheresis CVADs with heparin 100 units/mL, 4% citrate, acid-citrate-dextrose Formula A, or other antimicrobial lock solutions.40-42,44,45 (IV)
L. Use solution containing heparin (eg, 1 unit per mL of 0.9% sodium chloride [USP]) or preservative-free 0.9% sodium chloride (USP) as a continuous flow to maintain patency of arterial catheters used for hemodynamic monitoring. The decision to use preservative-free 0.9% sodium chloride (USP) instead of heparin infusion should be based on the clinical risk of catheter occlusion, the anticipated length of time the arterial catheter will be required, and patient factors such as heparin sensitivities.46-48 (II)

M. Apply the following recommendations for neonates and pediatrics.
1. Use a continuous infusion of heparin 0.5 units per kg for all CVADs in neonates.
2. Use continuous infusion of heparin 0.25 to 1 unit per mL (total dose of heparin 25-200 units per kg per day) for umbilical arterial catheters in neonates to prevent arterial thrombosis.
3. Use heparin 5 units per mL, 1 mL per hour as a continuous infusion for neonates and children with peripheral arterial catheters (see Standard 30, Umbilical Catheters).29 (II)

N. Use antimicrobial locking solutions for therapeutic and prophylactic purposes. Use in patients with long-term CVADs, patients with a history of multiple CR-BSIs, high-risk patient populations, and in facilities with unacceptably high rates of central line-associated bloodstream infection (CLABSI), despite application of other methods of CLABSI reduction.42,49-52 (I)

1. Antibiotic lock solutions contain supratherapeutic concentrations of antibiotics and may be combined with heparin. Anticipate the chosen antibiotic to be based on the specific infecting organism or on prevalent organisms within the organization when prophylaxis is the goal. For therapeutic use, start the antibiotic lock solutions within 48 to 72 hours of diagnosis; however, the duration of use remains controversial.53 (II)

2. Antiseptic locking solutions include ethanol, taurodilidone, citrate, 26% sodium chloride, methylene blue, fusidic acid, and ethylenediaminetetra-acetic acid (EDTA) used alone or in numerous combinations.51 (I)

3. Follow catheter manufacturers’ instructions for intraluminal locking with ethanol. Changes in CVADs made of polyurethane material, but not silicone, have led to catheter rupture and splitting. Monitor for thrombotic lumen occlusion as ethanol has no anticoagulant activity, hemolysis, and hepatic toxicity. Irreversible precipitation of plasma proteins that could add to CVAD lumen occlusion is associated with ethanol concentrations greater than 28%.37,54-56 (I)

4. Monitor sodium citrate, an anticoagulant with antimicrobial effects, for systemic anticoagu-

REFERENCES

Note: All electronic references in this section were accessed September 1, 2015.

7. Celetti SJ, Vaillancourt R, Pascuet E, Sharp D. Taste and/or odour disturbances in pediatric patients undergoing IV flush with...

41. VASCULAR ACCESS DEVICE (VAD) ASSESSMENT, CARE, AND DRESSING CHANGES

Standard

41.1 The entire infusion system, from the solution container to the vascular access device (VAD) insertion site, is regularly checked for system integrity, infusion accuracy, and expiration dates of the infusate, dressing, and administration set.

41.2 Site care, including skin antisepsis and dressing changes, are performed at established intervals and immediately if the dressing integrity becomes damp, loosened, or visibly soiled, or if moisture, drainage, or blood are present under the dressing.

41.3 A sterile dressing is applied and maintained on all peripheral, nontunneled, peripherally inserted central catheters, accessed implanted VADs, and tunneled cuffed catheters, at least until the insertion site is well healed.

41.4 Aseptic technique is followed when providing site care and dressing changes on VADs.

41.5 Label the dressing with the date performed or date to be changed based on organizational policies and procedures.

Practice Criteria

A. Visually inspect the entire infusion system from the solution container, progressing down the administration set to the VAD insertion site with each infusion intervention.

1. Inspect the infusion system for clarity of the infusate; integrity of the system (ie, leakage, luer connections secure) and of the dressing; correct infusate; accurate flow rate; and for expiration dates of the infusate, dressing, and administration set.¹²

B. Assess VAD function by flushing and aspirating for a blood return prior to each intermittent VAD use (eg, intermittent medication) and as clinically indicated with continuous infusions (eg, occlusion alarms). Recognize the risk of contamination with each manipulation of the infusion system (refer to Standard 36, Add-on Devices; Standard 40, Flushing and Locking).

C. Assess the VAD catheter-skin junction site and surrounding area for redness, tenderness, swelling, and drainage by visual inspection and palpation through the intact dressing and through patient reports about any discomfort including pain, paresthesias, numbness, or tingling.

1. Central vascular access devices (CVADs) and midline catheters: assess at least daily.³⁶
2. Short peripheral catheters: assess minimally at least every 4 hours; every 1 to 2 hours for patients who are critically ill/sedated or have cognitive deficits; hourly for neonatal/pediatric patients; and more often for patients receiving infusions of vesicant medications.7 (V)

3. Patients receiving outpatient or home care: instruct the patient or caregiver to check the VAD site at least once per day for signs of complications and to report signs/symptoms or dressing dislodgment immediately to their health care provider; for continuous infusions via a short peripheral catheter, instruct to check the site every 4 hours during waking hours.2,7 (V)

D. Measure the external CVAD length and compare to the external CVAD length documented at insertion when catheter dislodgment is suspected (refer to Standard 10, Documentation in the Medical Record; Standard 33, Central Vascular Access Device [CVAD] Malposition).

E. Measure upper-arm circumference when clinically indicated to assess the presence of edema and possible deep vein thrombosis (DVT). Take this measurement 10 cm above the antecubital fossa; identify the location and other characteristics, such as pitting or nonpitting. Compare to baseline measurement to detect possible catheter-associated venous thrombosis; a 3-cm increase in arm circumference and edema were associated with upper-arm DVT (see Standard 10, Documentation in the Medical Record; Standard 33, Vascular Access Site Preparation and Device Placement; Standard 52, Central Vascular Access Device [CVAD]-Associated Venous Thrombosis).8 (IV)

F. Perform skin antisepsis as part of the site care procedure:
 1. The preferred skin antiseptic agent is >0.5% chlorhexidine in alcohol solution.2-5,8,10 (I)
 2. If there is a contraindication to alcoholic chlorhexidine solution, tincture of iodine, an iodophor (povidone-iodine), or 70% alcohol may also be used.3,5 (I)
 3. Allow any skin antiseptic agent to fully dry prior to dressing placement; with alcoholic chlorhexidine solutions, for at least 30 seconds; for iodophors, for at least 1.5 to 2 minutes.3,5,11 (V)

4. Use chlorhexidine with care in premature infants and infants under 2 months of age due to risks of skin irritation and chemical burns.3-5,12-14 (IV)

5. For pediatric patients with compromised skin integrity, remove dried povidone-iodine with sterile 0.9% sodium chloride (USP) or sterile water.15 (V)

G. Assess skin underneath dressing. Anticipate potential risk for skin injury due to age, joint movement, and presence of edema. Be aware of the risk of medical adhesive-related skin injury (MARSI) associated with the use of adhesive-based engineered stabilization devices (ESDs). Use a skin barrier solution to reduce the risk of MARSI. Do not use compound tincture of benzoin due to increased risk of MARSI because it may increase the bonding of adhesives to skin, causing skin injury when the adhesive-based ESD is removed (refer to Standard 37, Vascular Access Device [VAD] Stabilization).

H. Perform dressing changes on CVADs and midline catheters at a frequency based on the type of dressing.
 1. Change transparent semipermeable membrane (TSM) dressings at least every 5 to 7 days and gauze dressings at least every 2 days; research has supported the superiority of a TSM dressing versus a gauze dressing; note that a gauze dressing underneath a TSM dressing is considered a gauze dressing and changed at least every 2 days.3-5,16 (II)
 2. Select a gauze dressing if there is drainage from the catheter exit site. If gauze is used to support the wings of a noncoring needle in an implanted port and does not obscure the insertion site, it is not considered a gauze dressing.2-5 (V)
 3. Secure dressings to reduce the risk of loosening/dislodgment, as more frequent dressing changes due to dislodgment are associated with increased risk for infection; more than 2 dressing changes for disruption were associated with a greater than 3-fold increase in risk of infection.17 (III)
 4. Change the dressing immediately to closely assess, cleanse, and disinfect the site in the event of drainage, site tenderness, other signs of infection, or if dressing becomes loose/dislodges.3-5,17 (III)

I. Perform dressing changes on short peripheral catheters if the dressing becomes damp, loosened, and/or visibly soiled and at least every 5 to 7 days.3 (V, Committee Consensus)

J. Use chlorhexidine-impregnated dressings over CVADs to reduce infection risk when the extraluminal route is the primary source of infection. Even when organizations show a low baseline central line-associated bloodstream infection (CLABSI) rate, further reduction in CLABSI rate has been demonstrated with use of chlorhexidine-impregnated dressings. The efficacy of chlorhexidine dressings in long-term CVAD use, beyond 14 days when intraluminal sources of infection are the primary source, has not been shown.10 (I)
 1. Do not use if any history of reactions to chlorhexidine.5 (V)
2. Use chlorhexidine-impregnated dressings with caution in premature neonates and among patients with fragile skin and/or complicated skin pathologies; contact dermatitis and pressure necrosis have occurred.5,18-20 (V)

3. Monitor for erythema and dermatitis at the dressing site.5,18-20 (V)

K. Consider bathing patients over 2 months of age with 2% chlorhexidine preparation on a daily basis if other CLABSI prevention strategies have not been effective.4,23-29 (I)

L. Consider the use of a hemostatic agent to reduce initial site bleeding if other methods (eg, pressure) fail to reduce the need for unplanned dressing changes after peripherally inserted central catheter (PICC) insertion.29 (V)

M. Consider use of chlorhexidine-impregnated dressings with peripheral arterial catheters as an infection reduction intervention.3,17,29 (III)

N. When the subcutaneous tunnel is well healed, consideration may be given to dressing with a tunneled, cuffed CVAD.3,5,30,31 (III)

O. Do not use rolled bandages, with or without elastic properties, to secure any type of VAD (refer to Standard 37, Vascular Access Device [VAD] Stabilization).

REFERENCES

Note: All electronic references in this section were accessed September 1, 2015.

locking mechanism to ensure a secure junction. Having an access device (VAD) hub or access site with a luer-locking mechanism helps prevent the introduction of contaminants. The administration set must be changed or when a new central vascular access device (CVAD) is placed. A change intermittent administration sets every 24 hours as it is now a primary intermittent administration set. (V, Committee Consensus)

II. Primary and Secondary Continuous Infusions

A. Change a secondary administration set that is detached from the primary administration set every 24 hours as it is now a primary intermittent administration set (see Practice Criteria III, Primary Intermittent Infusions). (V)

C. Avoid disconnecting primary continuous administration sets from the VAD hub or access site. (V, Committee Consensus)

III. Primary Intermittent Infusions

A. Change intermittent administration sets every 24 hours. When an intermittent infusion is repeatedly disconnected and reconnected for the infusion, there is increased risk of contamination at the spike end, catheter hub, needleless connector, and the male luer end of the administration set, potentially increasing risk for catheter-related bloodstream infection (CR-BSI). There is an absence of studies addressing administration set changes for intermittent infusions. (V, Committee Consensus)

B. Aseptically attach a new, sterile, compatible covering device to the male luer end of the administration set after each intermittent use. Do not attach the exposed male luer end of the administration set to a port on the same set (i.e., “looping”). (V, Committee Consensus)
IV. Parenteral Nutrition
A. Replace administration sets for parenteral nutrition (PN) solutions (total nutrient admixtures [TNA] and amino acid/dextrose formulations) at least every 24 hours; there are also recommendations to change the administration set with each new PN container (see Standard 61, Parenteral Nutrition).9,11 (IV)
B. Replace administration sets used for intravenous fat emulsions (IVFES) infused separately every 12 hours. Change the administration set with each new container; the characteristics of IVF (iso-osmotic, near-neutral-alkaline pH, and containing glycerol) are conducive to the growth of microorganisms.11 (V)
C. Use administration sets free of di-ethylhexyl-phthalate (DEHP) to administer lipid-based infusates, such as IVFE or TNA. DEHP is lipophilic and is extracted into the lipid solution with commonly used polyvinyl chloride administration sets and containers. DEHP is considered a toxin, and studies have demonstrated increased DEHP levels in lipid solutions, which is especially a risk with neonatal, pediatric, and long-term home care patients.11,13 (III)

V. Propofol Infusions
A. Replace administration sets used to administer propofol infusions every 6 or 12 hours per the manufacturers’ recommendations or when the container is changed.14 (I)

VI. Blood and Blood Components
A. Change the transfusion administration set filter after the completion of each unit or every 4 hours. If more than 1 unit can be infused in 4 hours, the transfusion set can be used for a 4-hour period (refer to Standard 62, Transfusion Therapy).

VII. Hemodynamic and Arterial Pressure Monitoring
A. Replace the disposable or reusable transducer and/or dome and other components of the system, including the administration set, continuous flush device, and flush solution used for invasive hemodynamic pressure monitoring every 96 hours, immediately upon suspected contamination, or when the integrity of the product or system has been compromised. Minimize the number of manipulations and entries into the system.15 (II)

REFERENCES
Note: All electronic references in this section were accessed September 30, 2015.

43. PHLEBOTOMY

Standard

43.1 Perform patient identification and proper labeling of all blood sample containers at the time of sample collection and in the presence of the patient.

43.2 Use blood conservation techniques for phlebotomy to reduce the risk of hospital-acquired anemia.
Practice Criteria

I. General

A. Control blood sampling procedures to prevent errors in the preanalytic phase before the sample reaches the laboratory. These errors delay treatment decisions due to spurious lab values, enhance the potential for patient harm, and increase costs of care. A centralized phlebotomy service for hospitalized patients has been shown to reduce preanalytic errors, such as hemolysis and specimen labeling. Competent nursing staff should perform sample collections from vascular access devices (VADs).1,4 (IV)

B. Educate the patient about the purpose and process for blood sampling.5,6 (V)

C. Assess the patient for fasting prior to collection of blood samples, if appropriate for the requested laboratory values.5-7 (V)

D. Use the same unique numbers for both patient identification and specimen labeling to reduce preanalytic errors and enhance patient safety. Use multiple process improvement methods such as staff engagement, transparency of data on mislabeled and unlabel specimens, process changes, root cause analysis, and accountability measures. An electronic system (eg, bar-code or radio-frequency technology) for patient identification and sample container labeling has been shown to reduce these errors.7-9 (V)

E. Perform all infection prevention practices including hand hygiene, appropriate use of gloves, single-patient tourniquets, single-use venipuncture and sampling devices, use of safety-engineered devices, and appropriate skin antisepsis (see Standard 16, Hand Hygiene; Standard 18, Medical Waste and Sharps Safety).5,10 (V, Regulatory)

F. Use vacuum tubes in the correct sequence according to the manufacturer’s directions for use (eg, color of the rubber stopper); appropriately mix the tube contents and blood; discard the needle and tube holder as 1 unit; and never remove the rubber stopper from the tubes as methods to decrease blood exposure, accidental needlestick injury, and error in sample analysis.5,10,11 (V, Regulatory)

G. Do not rely on visual inspection of the blood sample to detect hemolysis. Hemolysis causes spurious values for many tests (eg, electrolytes, glucose, cardiac biomarkers, coagulation times). Contact the clinical laboratory about parameters for the free hemoglobin level that would cause a sample to be rejected.5,12-14 (III)

H. Employ blood conservation strategies to reduce phlebotomy-associated blood loss, which is a significant cause of hospital-acquired anemia in patients of all ages. This blood loss often results in the need for blood transfusion and its inherent risks. Collaborate with the laboratory about the minimum volume of blood required for each test. Blood conservation strategies include:

1. Eliminating unnecessary laboratory tests.
2. Reducing the frequency of obtaining blood samples.
3. Drawing blood samples based on clinical need rather than a routine schedule.
4. Using small-volume collection tubes (eg, requiring less than 2 mL of blood).
5. Using point-of-care testing methods.
6. Using closed loop systems for venous and arterial VADs as these systems return the blood to the patient.
7. Using the push-pull or mixing method.5,11,15-23 (III)

II. Blood Sampling via Direct Venipuncture

A. Perform venipuncture for phlebotomy on the opposite extremity of an infusion. If phlebotomy must be performed on the extremity with infusing solutions, a vein below or distal to the site of infusion should be used.2 (V)

B. Avoid venipuncture on upper extremities with lymphedema, compromised circulation associated with radiation therapy, paralysis, or hemiparesis from a cerebrovascular accident. When possible, restrict venipuncture to the dorsum of the hand in patients with an actual or planned dialysis fistula or graft. Evidence for avoiding all venipuncture on the side of axillary node dissection comes from conflicting studies; however, there remains a recommendation to avoid all venipuncture procedures on these upper extremities (refer to Standard 27, Site Selection).

C. Perform venipuncture for phlebotomy with a straight or winged needle on veins in the antecubital fossa (eg, median cubital, cephalic, and basilic veins) due to the lower rates of hemolysis associated with these devices and sites.13,14,24 (II)

D. Perform skin antisepsis prior to all venipunctures. Appropriate agents include 70% alcohol, >0.5% chlorhexidine in alcohol solution, tincture of iodine, and povidone-iodine. Excessive alcohol on the skin has previously been thought to cause hemolysis; however, 1 study has shown this to not be a cause (see Standard 33, Vascular Access Site Preparation and Device Placement).25-28 (II)

E. Use additional precautions for obtaining blood cultures to avoid false-negative and false-positive results and to reduce incorrect classification as central line-associated bloodstream infection (CLABSI).
1. Use a dedicated phlebotomy team to reduce blood culture contamination.
2. Obtain blood for culturing from a peripheral venipuncture. Use a central vascular access device (CVAD) for drawing blood cultures only when clinically indicated for diagnosis of catheter-related bloodstream infection (CR-BSI).
3. Consider use of a standardized sterile blood culture collection kit to reduce sample contamination.
4. Disinfect the rubber stopper of the blood culture bottles using 70% alcohol. Iodine products are not recommended as they can degrade the stopper material.
5. Draw blood for culture before drawing the sample for other tests.
6. Draw a quantity of blood that is sufficient for isolating organisms (ie, 20-30 mL for adults; no more than 1% of the total blood volume for infants and children).
7. Discard the initial blood sample (eg, 5 mL) when drawing from a direct venipuncture. Do not discard the first sample when the sample is obtained from any type of CVAD.\(^{27-29}\) (II)

F. To improve phlebotomy practice:
1. Avoid tight fist clenching or repetitively opening and closing the fist to prevent pseudohyperkalemia.\(^{30,31}\) (V)
2. Use a straight or winged needle instead of obtaining the sample during the procedure to insert a short peripheral catheter.\(^{4,11,24,32,33}\) (II)
3. Avoid use of a tourniquet or blood pressure cuff if possible. If a tourniquet is required, limit tourniquet time to less than 1 minute to reduce the risk of hemolysis and inaccurate chemistry lab values caused by changes in vascular endothelium from increased venous pressure and hypoxia. Immediately release the tourniquet when the blood begins to flow into the collection container.\(^{12,34-36}\) (IV)
4. For coagulation studies, do not discard the initial sample except when a winged needle with an attached extension set is used. Air in the extension set prevents the correct ratio of blood to anticoagulant additive in the tube.\(^{37-39}\) (IV)
5. Perform venipuncture in neonates by a skilled phlebotomist instead of heel lance methods due to the increased pain from the heel lance.\(^{40}\) (II)

III. Blood Sampling via a Vascular Access Device

A. Carefully analyze risks versus benefits before deciding to use a VAD for obtaining blood samples.
1. Risks of venipuncture include anxiety, pain, damage to skin and nearby nerves, and hematoma in patients receiving anticoagulants or with bleeding disorders.
2. Risks associated with use of a VAD include increased hub manipulation and the potential for intraluminal contamination, alterations in VAD patency, and erroneous lab values associated with adsorption of medications infused through the VAD.\(^{41-48}\) (IV)

B. Consider use of a CVAD phlebotomy bundle checklist combined with periodic direct observations for adherence to the checklist to reduce CR-BSI. There is no consensus on the exact contents of such a checklist.\(^{49,50}\) (V)

C. Use the discard or push-pull (ie, mixing) methods for obtaining a sample from CVADs. No studies of these specific techniques are found for peripheral or midline catheters. Apply these additional factors based on patient age and type of CVAD.
1. A 3-mL discard volume produces the same measurement outcomes when compared to a 5-mL discard volume in multiple types of CVADs in a pediatric population. The exception to this discard volume is coagulation studies obtained from a CVAD exposed to heparin.\(^{51}\) (IV)
2. Discard volumes of 6 mL from nontunneled catheters and 9 mL from tunneled cuffed catheters were sufficient to remove infused glucose, although the discard volume for implanted ports could not be established.\(^{50,51}\) (IV)
3. The push-pull or mixing method produces good outcomes for measuring levels of actinomycin-D and vincristine, obtaining chemistry panels and complete blood counts, and therapeutic drug monitoring for gentamicin and doxorubicin from CVADs. These studies do not provide consensus on the required number of push-pull cycles or the volume of blood to be pulled; however, 5 cycles is the most common.\(^{41,44,52,53}\) (III)
4. Do not use the reinfusion method (ie, delivery of the discard specimen into the VAD after obtaining the sample) due to risk of contamination and blood clot formation.\(^{50,53,54}\) (IV)

D. Short peripheral catheters
1. Consider obtaining a blood sample from an indwelling short peripheral catheter for pediatric patients, adults with difficult venous access, presence of bleeding disorders, and the need for serial tests. Infusing solutions should be stopped for at least 2 minutes prior to obtaining the blood sample; waste 1 to 2 mL of blood before obtaining the sample.\(^{55-58}\) (IV)
2. Sampling of blood from indwelling short peripheral catheters is reliable for many routine blood tests, including coagulation studies. Obtaining blood cultures from short peripheral catheters at insertion or during the dwell is not recommended.\(^{25,59-61}\) (II)
3. Obtaining a blood sample during the insertion of a short peripheral catheter is associated with higher rates of hemolysis and spurious lab values, regardless of whether the sample was drawn directly from the catheter hub or from an attached extension set. The effect of this process on the outcome of the catheter is unknown.\(^4,11,14,24\) (II)

4. Veins of the antecubital fossa produce the lowest rates of hemolysis. However, short peripheral catheters inserted for infusion into veins of the antecubital fossa are not recommended due to higher catheter complication rates in areas of joint flexion (see Standard 27, Site Selection).\(^24\) (II)

5. Lengthy tourniquet time and difficult catheter insertion can produce inaccurate lab values.\(^13,62\) (IV)

E. For midline catheters, no evidence is available regarding obtaining blood samples.

F. Central vascular access devices

1. For therapeutic drug monitoring, draw the blood sample from a dedicated lumen not used for infusion of the drug being monitored.\(^63\) (IV)

2. When a dedicated CVAD lumen cannot be used, test results may be falsely elevated, requiring careful evaluation if dosage adjustment is dependent upon the accuracy of the test results. Retesting via direct venipuncture may be necessary. Conflicting studies show elevated antibiotic levels with blood sampling from CVADs while other studies have shown no difference. In vitro and in vivo studies of immunosuppressant medications (eg, cyclosporin and tacrolimus) given through CVADs constructed of silicone, polyurethane, and polyurethane with silver have shown excessively high drug levels.\(^45,63,65\) (IV)

3. Ensure that a standardized protocol is used consistently by all staff including thorough flushing of the VAD lumen (eg, 10-20 mL preservative-free 0.9% sodium chloride (USP)) followed by an adequate volume of wasted blood when using the discard method.\(^44,45,63,65\) (IV)

4. Carefully assess coagulation values from a blood sample obtained from a heparinized CVAD. In a small study, coagulation values correlated with values drawn from a separate venipuncture, except international normalization ratio (INR), when heparinized peripherally inserted central catheters (PICCs) were flushed with 10 mL of 0.9% sodium chloride and 6 mL of blood was discarded. Retesting via a direct venipuncture is required when questionable results are obtained.\(^46-68\) (IV)

5. Stop all infusions, and flush the lumen with preservative-free 0.9% sodium chloride (USP) prior to blood sampling from a CVAD. Research has not established the length of time for stopping fluid flow or the amount of flush solution. One study suggests a wait time of 10 minutes after stopping the infusion before drawing the sample.\(^46\) (IV)

6. Use the largest lumen for blood sampling from multilumen CVADs. For CVADs with staggered lumen exit sites, the sample should be drawn from the lumen exiting at the point farthest away from the heart. One study suggests larger volumes (10-20 mL) of flush solution provide more accurate peak levels of antibiotics when compared to smaller volumes (3 mL).\(^46,69\) (IV)

7. Avoid using a CVAD for obtaining blood samples for culturing as these samples are more likely to produce false-positive results. Use of a CVAD for this purpose should be limited to the absence of peripheral venipuncture sites or when there is a need for diagnosis of a CR-BSI. Remove and discard the used needleless connector prior to drawing a blood sample to reduce risk of a false-positive blood culture result.\(^70-72\) (IV)

8. Do not routinely use CVADs infusing parenteral nutrition for blood sampling as this is a significant risk factor for CR-BSI.\(^47,48\) (V)

G. Arterial catheters

1. Prior to puncture of the radial artery, assess circulation to the hand. Review medical history (eg, trauma, previous radial artery cannulation, radial artery harvesting); assess presence of anticoagulants; and perform a physical examination of hand circulation such as assessing radial and ulnar pulses, Allen test, pulse oximetry, or Doppler flow study.\(^73,74\) (I A/P)

2. Use a 20-gauge catheter or smaller to reduce damage to the radial artery.\(^73\) (IV)

3. Because palpatation is needed to feel the arterial pulsation, use sterile gloves for puncture and catheter insertion into any artery (refer to Standard 33, Vascular Access Site Preparation and Device Placement).

4. For arterial blood gases, expel air from the syringe immediately after obtaining the sample, and place the syringe on ice for immediate transport to the lab.\(^5\) (V)

5. Maintain patency of arterial catheters with 0.9% sodium chloride (USP) with or without added heparin. Do not use solutions containing glucose in adults as this results in falsely elevated glucose levels, possible overtreatment with insulin, and dangerously low serum levels of glucose. Store solutions intended for arterial infusion in a location different from solutions intended for venous infusion. Ensure that the label on the solution container is visible and not obscured by the presence of a pressurized device.\(^75,76\) (IV)
REFERENCES

Note: All electronic references in this section were accessed September 30, 2015.

44. VASCULAR ACCESS DEVICE (VAD) REMOVAL

Standard

44.1 The clinical need for each peripheral and nontunneled central vascular access device (CVAD) is assessed on a daily basis.

44.2 Vascular access devices (VADs) are removed upon an unresolved complication, discontinuation of infusion therapy, or when deemed no longer necessary for the plan of care.

44.3 VADs are not removed based solely on length of dwell time because there is no known optimum dwell time.

Practice Criteria

I. Short Peripheral and Midline Catheters

A. Remove the short peripheral catheter if it is no longer included in the plan of care or has not been used for 24 hours or more. (IV)

B. Remove short peripheral and midline catheters in pediatric and adult patients when clinically indicated, based on findings from site assessment and/or clinical signs and symptoms of systemic complications (eg, bloodstream infection). Signs and symptoms of complications with or without infusion through the catheter include, but are not limited to, the presence of:

1. Any level of pain and/or tenderness with or without palpation.

2. Changes in skin temperature (hot or cold).

3. Changes in color (erythema or blanching).

4. Edema.

5. Induration.

6. Leakage of fluid or purulent drainage from the puncture site.

7. Other types of dysfunction (eg, resistance when flushing, absence of a blood return).

C. Consider labeling catheters inserted under suboptimal aseptic conditions in any health care setting (eg, “emergent”). Remove and insert a new catheter as soon as possible, preferably within 24 to 48 hours. (IV)

D. If unable to insert a new catheter in patients with difficult venous access and continuation of infusion therapy is required, immediately contact the licensed independent practitioner (LIP) about delays in administering the prescribed therapy (refer to Standard 26, Vascular Access Device [VAD] Planning).

E. Notify the LIP about signs and symptoms of suspected catheter-related infection and discuss the need for obtaining cultures (eg, drainage, blood culture) before removing a peripheral catheter (refer to Standard 49, Infection).

F. In the event of extravasation, detach all administration sets and aspirate from the catheter hub prior to catheter removal to remove the vesicant medication from the catheter lumen and as much as possible from the subcutaneous tissue (refer to Standard 46, Infiltration and Extravasation).

II. Nontunneled Central Vascular Access Devices (CVADs)

A. Assess and discuss with the patient’s health care team the continuing need for the nontunneled CVAD on a daily basis and remove when it is no longer needed for the plan of care. Criteria for justification of continued use of a CVAD include but are not limited to:

1. Clinical instability of the patient (eg, alteration in vital signs, oxygen saturation).

2. Prescribed continuous infusion therapy (eg, parenteral nutrition, fluid and electrolytes, medications, blood or blood products).

3. Hemodynamic monitoring.

4. Prescribed intermittent infusion therapy (eg, any medication including anti-infectives in patients with a known or suspected infection).
5. Documented history of difficult peripheral venous access. (V)

B. Employ strategies to facilitate timely CVAD removal including, but not limited to:
1. Daily patient rounds by an interprofessional team.
2. Use of a standardized tool including factors to be considered for making the decision to remove the CVAD.
3. Assessment by designated infusion/vascular access nursing staff.
4. Assessment by designated unit-based nurse without other patient care responsibilities when other strategies are unsuccessful. (IV)

C. Assess and report signs and symptoms of CVAD complications to the LIP including, but not limited to:
1. Pain and/or tenderness in unusual locations of neck, chest, or upper abdomen.
2. Changes in color (erythema or blanching) at or surrounding the insertion site.
3. Changes in skin temperature at or surrounding the insertion site.
4. Edema.
5. Unusual respiratory and neurological changes.
6. Leakage of fluid or purulent drainage from the puncture site.
7. Catheter dysfunction (eg, resistance when flushing, alteration in gravity infusion, absence of blood return).

D. Collaborate with the health care team members to plan removal and insertion of a new catheter to meet vascular access needs in the presence of unresolved complication(s) and a continued need for infusion therapy.
1. Insertion of a peripherally inserted central catheter (PICC) or midline catheter has been suggested as a viable alternative upon removal of other types of CVADs (see Standard 26, Vascular Access Device [VAD] Planning). (IV)

E. For CVAD removal:
1. Place the patient in a supine flat or Trendelenburg position, unless contraindicated, when removing any type of CVAD.
2. While documentation of air embolism during PICC removal has not been found, the exit site could be at the same level as the patient’s heart, increasing the risk of air entering through an intact skin-to-vein tract and fibrin sheath.
3. Documentation of air embolism from removal of a femorally inserted CVAD has not been found, although there is evidence of air entering the catheter during insertion and during other procedures through the femoral vein. The exit site will most likely be at or below the level of the heart, possibly decreasing but not eliminating the risk of air embolism on removal (see Standard 50, Air Embolism). (V)

F. Never forcibly remove a CVAD if resistance is encountered. Contact the LIP to discuss appropriate interventions for successful removal. Forcible removal can result in catheter fracture and embolization. Catheter pieces retained in the vein should be removed with endovascular techniques to reduce the risk of infection, thrombosis, and migration of the catheter piece. (V)

III. Surgically Placed CVADs: Tunneled Cuffed/Implanted Ports

A. Assess the clinical need for a tunneled cuffed catheter and implanted port on a regular basis. (II)
B. Arrange for removal with the LIP when infusion therapy is completed, in the presence of an unresolved complication, and when it is no longer needed for the plan of care. Before removal, consider the
possibility for infusion therapy to resume in the future (eg, patients with sickle cell anemia, cystic fibrosis, or cancer diagnoses). \(^\text{29}\) (II)

C. Consult with the health care team regarding the decision to remove or salvage a CVAD due to suspected or confirmed CR-BSI (refer to Standard 49, Infection).

D. Immediately report cuff or port body exposure to the health care team and anticipate appropriate interventions (eg, resuture of incision), including CVAD removal. \(^\text{30,31}\) (V)

E. Ensure complete removal of the subcutaneous cuff to prevent subcutaneous abscess and delayed healing. Fluoroscopy and ultrasound guidance may be necessary to verify cuff location and facilitate surgical removal. \(^\text{32,33}\)

IV. Arterial Catheters

A. Assess the clinical need for the arterial catheter on a daily basis and remove when it is no longer needed for the plan of care. \(^\text{34}\) (V)

B. Apply digital pressure to the insertion site using a sterile gauze pad until hemostasis is achieved by using manual compression. Hemostatic pads designed to potentiate clot formation used in combination with manual pressure have shown effectiveness equal to or better than manual pressure in small randomized trials. A sterile dressing should be applied to the access site. \(^\text{35,36}\) (III)

C. Assess and document the circulatory status distal to the area of cannulation after removal of the arterial catheter. \(^\text{34}\) (V)

REFERENCES

Note: All electronic references in this section were accessed September 30, 2015.

Section Seven: Vascular Access Device (VAD)-Related Complications

Section Standards
I. To ensure patient safety, the clinician is competent to recognize signs and symptoms of vascular access device (VAD)-related complications during insertion, management, and removal, and appropriately intervene.
II. Prevention, assessment, and management of complications are established in organizational policies, procedures, and/or practice guidelines.

45. PHLEBITIS

Standard
45.1 The clinician assesses the vascular access site for phlebitis; determines the need for and type of intervention; educates the patient and/or caregiver about phlebitis, the intervention, and any follow-up; and assesses patient response to treatment.

Practice Criteria
A. Assess regularly, based on patient population, type of therapy, and risk factors, the vascular access sites of short peripheral catheters, midline catheters, and peripherally inserted central catheters (PICCs) for signs and symptoms of phlebitis using a standardized tool or definition. Instruct the patient to report pain or discomfort at the vascular access site. Signs and symptoms of phlebitis include pain/tenderness, erythema, warmth, swelling, induration, purulence, or palpable venous cord. The number or severity of signs and symptoms that indicate phlebitis differs among published clinicians and researchers (see Standard 41, Vascular Access Device [VAD] Assessment, Care, and Dressing Changes).1-18 (III)

B. Recognize risk factors that can be addressed:
1. Chemical phlebitis may be related to infusates with dextrose >10% or high osmolarity (>900 mOsm/L); certain medications (depending on dosage and length of infusion), such as potassium chloride, amiodarone, and some antibiotics; particulates in the infusate; too large a catheter for the vasculature with inadequate hemodilution; and skin aseptic solution that is not fully dried and pulled into the vein during catheter insertion. Consider using a midline catheter or PICC for infusates listed above or identified as causing phlebitis, depending on length of infusion time and anticipated duration of therapy. Allow skin to thoroughly dry after application of antiseptic solution.7,11,19-25 (IV)
2. Mechanical phlebitis may be related to vein wall irritation, which can come from too large a catheter for the vasculature, catheter movement, insertion trauma, or catheter material and stiffness. Choose the smallest catheter for therapy, 20 or 22 gauge if possible; secure catheter with stabilizing device; avoid areas of flexion, and stabilize joint as needed.11,16,20,21,23,26,27 (IV)
3. Bacterial phlebitis may be related to emergent vascular access device (VAD) insertions and poor aseptic technique. Label a catheter inserted during emergent conditions so it can be removed and resited as needed. Move catheter in a lower extremity to an upper extremity in adults; move to a new proximal site or opposite side for pediatrics if possible. Consider a central vascular access device (CVAD) and/or consider alternative route for medication.9,11,20,21 (IV)
4. Patient-related factors include current infection, immunodeficiency, and diabetes; insertion in a lower extremity except for infants; and age ≥ 60 years.16,20,24,27 (IV)
5. Postinfusion phlebitis, although rare, occurs post catheter removal through 48 hours due to any of the factors above.11,28 (IV)

C. If phlebitis is present with short peripheral catheters, midline catheters, and PICCs, determine the possible etiology of the phlebitis, such as chemical, mechanical, bacterial, or postinfusion; apply warm compress; elevate limb; provide analgesics as needed; consider other pharmacologic interventions such as anti-inflammatory agents; and consider removal as necessary. Topical gels or ointments to treat phlebitis require further study for efficacy (see Standard 44, Vascular Access Device [VAD] Removal).11,20,23,29-34 (III)

1. Chemical phlebitis: evaluate infusion therapy and need for different vascular access, different medication, or slower rate of infusion; determine if catheter removal is needed. Provide interventions as above.7,20 (IV)

2. Mechanical phlebitis: stabilize catheter, apply heat, elevate limb, and monitor for 24 to 48 hours; if signs and symptoms persist past 48 hours, consider removing catheter.23,33 (V)

3. Bacterial phlebitis: if suspected, remove catheter. Consider the need to collaborate with the licensed independent practitioner regarding the need for continued or alternative vascular access when the VAD is removed.10,11,35 (IV)

4. Postinfusion phlebitis: if bacterial source, monitor for signs of systemic infection; if nonbacterial, apply warm compress; elevate limb; provide analgesics as needed; and consider other pharmacologic interventions such as anti-inflammatory agents or corticosteroids as necessary.28,33 (V)

D. When the short peripheral catheter, midline catheter, or PICC is removed, monitor the vascular access site for 48 hours to detect postinfusion phlebitis or, upon discharge, give the patient and/or caregiver written instructions about signs and symptoms of phlebitis and the person to contact if this occurs.11 (V)

E. Use a standardized phlebitis scale or definition, which is valid, reliable, and clinically feasible. The population for which the scale is appropriate should be identified as adult or pediatric.

1. Two phlebitis scales have demonstrated validity and reliability in some studies and have been used for adult patients. Recent evidence recommends further study for valid and reliable assessment tools.6,12,36-39 (I)

2. The Phlebitis Scale (Table 1) has concurrent validity, interrater reliability, and is clinically feasible.8 (IV)

3. Visual Infusion Phlebitis (VIP) Scale (Table 2) has content validity, interrater reliability, and is clinically feasible.5,40 (IV)

F. Review phlebitis incidents causing harm or injury, using incident or occurrence reports or medical record reviews, for quality improvement opportunities (see Standard 6, Quality Improvement).41-43 (V)

REFERENCES
Note: All electronic references in this section were accessed September 30, 2015.

46. INFILTRATION AND EXTRAVASATION

Standard

46.1 The clinician assesses the peripheral and central vascular access device site for signs and/or symptoms of infiltration and extravasation before each infusion and on a regular basis and educates the patient and/or caregiver about infiltration/extravasation, any interventions, and any required follow-up.

46.2 Appropriate intervention(s) are implemented as determined by the characteristics of the solution or medication escaping from the vein.

Practice Criteria

A. Select the most appropriate vascular access device (VAD) and insertion site to reduce the risk for infiltration/extravasation. Do not use winged metal needles for infusion as they are associated with an increased risk of infiltration (refer to Standard 26, Vascular Access Device [VAD] Planning; Standard 27, Site Selection).

B. Assess all VADs for patency and the absence of signs and symptoms of infiltration and extravasation prior to each intermittent infusion and on a regular basis for continuous infusions. Assessment includes observation, palpation, flushing to identify resistance, aspiration for a blood return, and listening to the patient’s report of pain. Frequency of VAD site assessment depends upon the specific patient population and characteristics of the infusion therapy (refer to Standard 40, Flushing and Locking; Standard 41, Vascular Access Device [VAD] Assessment, Care, and Dressing Changes).

C. Recognize risk factors associated with infiltration and extravasation including:

1. Insertion sites in the hand, antecubital fossa, and upper arm when compared to sites in the forearm.

2. Infusion of antibiotics and corticosteroids through a peripheral catheter.

3. Current infection.

4. Subsequent peripheral catheters after the first insertion.

5. Inability or difficulty with communicating pain, tightness, or other discomfort.

6. Altered mental status or cognition (eg, agitation, confusion, sedation).

7. Age-related changes to vasculature, skin, and subcutaneous tissue.

8. Diseases that produce changes in vasculature or impaired circulation (eg, diabetes, lymphedema, systemic lupus, Raynaud’s disease, peripheral neuropathy, peripheral vascular disease).

9. Medications that alter pain sensation (eg, narcotics) or suppress the inflammatory response (eg, steroids).

10. Difficulty with peripheral venous access related to obesity, history of multiple venipunctures, and infusion therapy.

11. Peripheral catheters indwelling longer than 24 hours.

12. Use of deep veins with insufficient catheter length.

13. Length of the injection or infusion time for vesicant medications.1-9 (IV)

D. Recognize the differences between vesicant, nonvesicant, and irritant solutions and medications. There is no accepted scoring system for classification of medications as a vesicant or irritant, leaving clinicians to rely upon specific drug information, case reports, and other published literature. Each facility should reach a consensus on what medication is considered to be a vesicant and irritant based on their internal formularies.

1. Identify the vesicant nature of antineoplastic and noncytotoxic medications prior to administration and be prepared to use the correct antidote treatment for each medication.

2. Vesicant medications can produce varying degrees of tissue damage, including blistering and necrosis. Surgical washout procedure, debridement, and skin grafting may be indicated.

3. Nonvesicant solutions and medications may produce tissue damage in neonates and infants.

4. Vesicant and nonvesicant solutions and medications can produce compartment syndrome with the possibility of arterial and nerve damage that could lead to complex regional pain syndrome or amputation of the extremity if not quickly recognized.

5. Tissue damage from irritant medications is associated with a large volume of concentrated medication escaping into the tissue.2,3,10-15 (IV)

E. Identify causes of infiltration/extravasation that may indicate the need for more frequent monitoring or
removal and insertion of a new VAD, including but not limited to:

1. Mechanical issues associated with VAD site selection, catheter size, insertion techniques, central vascular access device (CVAD) tip location, securement, and normal body movement (eg, respiratory and cardiac function).
 a. Peripheral sites most often associated with infiltration/extravasation are the hand and wrist, foot and ankle, and antecubital fossa.
 b. Ultrasound-guided peripheral catheter insertion of deep veins of the upper arm is associated with higher rates of infiltration/extravasation when compared to other peripheral catheter insertion sites. Short catheter length and vessel depth are associated with higher rates of infiltration/extravasation (refer to Standard 22, Vascular Visualization).
 c. Extravascular CVAD tip location can occur in many anatomical locations and at any point in the dwell time (refer to Standard 53, Central Vascular Access Device [CVAD] Malposition).

2. Pharmacologic or physiochemical properties associated with drug concentration and volume escaping into the tissue; hyperosmolarity and nonphysiological pH; the medication’s ability to bind DNA, kill replicating cells, and/or cause vascular dilatation; and excipients, such as alcohol or polyethylene glycol, used in the formulation of some medications.

3. Obstructive issues, such as vein thrombosis or stenosis proximal to (located above) the insertion site and tip location, limiting blood flow and causing overflow of infusing solutions from the puncture site. 3,5,16 (IV)

F. Limit the amount of solution that enters the tissue through early recognition of signs and symptoms of infiltration/extravasation. Signs and symptoms progress from simple to complex, and the clinical presentation can be confused with phlebitis or flare reactions.

1. Pain may be the initial symptom and may be sudden and severe when associated with a rapid injection of solution or medications; may be out of proportion to the injury; may appear with passive stretching of the muscles in the extremity; pain intensity may increase over time.

2. Edema may appear as a raised area under the skin near the peripheral VAD site or as an enlarged and tense extremity due to fluid accumulating in compartments of the extremity. Compare circumference of both extremities. Edema from a CVAD may appear as a raised area on the neck or chest.

3. Changes in color may include blanching from nonvesicant solutions; vesicants can produce redness; however, extravasation into deep tissue may not produce visible color changes.

4. Fluid leakage from the puncture site, subcutaneous tunnel, or port pocket.

5. Blisters may appear during hours (eg, contrast media), or may be delayed for days with antineoplastic agents. Progression to ulceration may vary from a few days to 1 to 2 weeks, depending upon the medication that extravasated. 1,4,6,13,16 (IV)

G. Immediately stop the infusion when the patient reports pain, burning, stinging, and/or tightness, at or around the insertion site, catheter tip, or entire venous pathway, as this should not be considered “normal” with any infusion. These symptoms require further assessment to determine the appropriate intervention(s).

1. Assess the area distal (located below) to the VAD site for capillary refill, sensation, and motor function.

2. Aspirate for a blood return, although the peripheral catheter tip could be inside the vein lumen, yet an additional puncture of the vein wall has occurred.

3. Do not flush the VAD, as this would inject additional medication into the tissue.

4. Disconnect the administration set from the catheter hub, and aspirate from the catheter or implanted port access needle with a small syringe, although a very small amount of fluid may be retrieved.

5. Remove the peripheral catheter or implanted port access needle.

6. Never apply pressure to the area.

7. Using a skin marker, outline the area with visible signs of infiltration/extravasation to allow for assessing changes.

8. Photograph the area to identify progression or exacerbation of the tissue injury.

9. Notify the licensed independent practitioner (LIP) about the event, and activate the established treatment protocol or the prescribed treatment.

10. Anticipate use of radiographic tests to identify the catheter tip location. Timing of CVAD removal depends on the plan of care, which is based on the identified extravascular location of the catheter tip. Surgical intervention may be needed as determined by the LIP.

11. Estimate the volume of solution that has escaped into the tissue based on the original amount of solution in the container, the amount remaining when stopped, and rate of injection or infusion. The need for surgical consultation is based on the clinical signs and symptoms and their progression.
12. Elevate the extremity to encourage lymphatic reabsorption of the solution/medication. \(^2,3,6,17\) (IV)

H. Follow the established treatment protocol or LIP prescription as appropriate for the solution and medication in the tissue with the goal of limiting the exposure of subcutaneous tissue to the solution or medication. Provide convenient access to the list of vesicants and irritants, infiltration/extravasation management protocols, electronic order forms, supplies, and other materials needed to manage the event. \(^4,17-19\) (IV)

I. Use the appropriate method for clinical management of the infiltration/extravasation site.

1. Apply dry, cold compresses when the goal is to localize the medication in the tissue and reduce inflammation.
 a. Do not use cold compresses with extravasation of vinca alkaloids and vasopressors and in the presence of vaso-occlusive events (eg, sickle cell anemia).
 b. Remove the cold compress 15 minutes before the infusion of dexrazoxane begins.
 c. Neutralize the medication with the appropriate antidote.

2. Apply dry, warm compresses when the goal is to increase local blood flow, and disperse the medication through the tissue.
 a. Do not exceed 42°C (107.6°F) in pediatrics.
 b. Dilute the medication further with the appropriate antidote.

3. Use dry, cold compresses for nonirritant and hyperosmolar fluids and medications.

4. Administer the appropriate antidote for the solution or medication in the tissue.
 a. Daily intravenous (IV) infusion of dexrazoxane over 3 days is the recommended antidote for anthracycline extravasation. Infusion should begin within 6 hours of the extravasation and be infused into the opposite extremity.
 b. Inject other antidotes into the subcutaneous tissue surrounding the extravasated site. Use a small needle (eg, 25 gauge or smaller) and change it for each injection. Follow the specific manufacturer’s directions for dose and administration.
 i. Sodium thiosulfate is recommended for mechloretamine and has been suggested for large extravasates of cisplatin.
 ii. Phentolamine is preferred for vasopressor extravasation. Normal perfusion of the area is seen within 10 minutes. Repeated injection may be necessary if hypoperfusion is still present or if vasoconstriction is extending to a greater area.
iii. Terbutaline injection has been used for vasopressor extravasation due to the intermittent shortages of phentolamine.

iv. Hyaluronidase is not considered to be an antidote to the specific extravasated drug. Instead, it is an enzyme that increases absorption and dispersion of the drug in the tissue and its use is reported with antineoplastic and noncytotoxic drugs; hyperosmolar solutions (eg, parenteral nutrition and calcium salts); and radiographic contrast media. Recombinant hyaluronidase is not derived from animals and may have a lower risk of allergic response. Do not inject by the IV route. Subcutaneous injection within 1 hour of the extravasation event produces the best response. Follow the manufacturer’s directions for dose and administration. Use of dry heat in conjunction with hyaluronidase works synergistically to increase blood flow and disperse the extravasated drug.

v. Apply topical nitroglycerin 2% as a 1-inch strip to the site of vasopressor extravasation; repeat every 8 hours as clinically indicated.

5. Use nonpharmacologic methods (eg, elevation, heat application, surgical washout) for extravasation of acidic and alkaline medications as subcutaneous injections could cause gas formation and exacerbate the tissue injury. \(^2,3,17,20,21\) (IV)

J. Do not rely on the alarm from an electronic infusion pump to identify infiltration/extravasation; alarms are not designed to detect the presence or absence of complications.

1. Electronic infusion pumps do not cause infiltration/extravasation; however, they will exacerbate the problem until the infusion is stopped.

2. Automated power or pressure injectors produce a jet of fluid exiting the catheter tip. It has been postulated that this jet could induce vessel perforation and extravasation.

3. Medication with a high viscosity requires less force to cause fluid flow when it is warmed to 37°C. Fluid warming may be associated with lower rates of extravasation (see Standard 24, Flow-Control Devices). \(^22-24\) (IV)

K. Educate the patient and caregivers about:

1. The risks of receiving a vesicant medication prior to administration, emphasizing the specific signs and symptoms to immediately report.
2. The possible progression of the signs and symptoms of infiltration/extravasation.
3. Changes that should be reported to the LIP (eg, changes in extremity mobility and sensation, elevated temperature, and other signs of infection).
4. Protecting the site from sunlight.
5. The frequency of follow-up visits to the LIP and/or other medical consultants as needed (see Standard 8, Patient Education).2,6 (IV)

L. Use a standardized tool or definition for assessing and documenting infiltration/extravasation from all types of VADs that is valid, reliable, and clinically feasible. This assessment should occur initially and regularly based on organizational policies and procedures; continue until resolution; and be oriented to the patient’s size and age. Several scales have been published; however, only 1 pediatric tool has been tested for validity and interrater reliability. The chosen grading scale should also be accompanied by appropriate interventions to manage each level on the tool.3,17,25 (IV)

M. Use a standardized format to document initial and ongoing assessment and monitoring of the infiltration/extravasation site and to document all factors involved with the event.6,17 (IV)

N. Monitor the site, as needed based on severity of the event and the venue of care. Assess changes of the area by measurement and/or photography; observe skin integrity, level of pain, sensation, and motor function of the extremity.6 (IV)

O. Review infiltration/extravasation incidents causing harm or injury, using incident or occurrence reports or medical record reviews for quality improvement opportunities (refer to Standard 6, Quality Improvement).

REFERENCES
Note: All electronic references in this section were accessed October 1, 2015.
47. NERVE INJURIES

Standard

47.1 During peripheral venipuncture and catheter dwell time, reports of paresthesia-type pain require immediate removal of the vascular access device (VAD).

47.2 During the insertion or dwell of central vascular access devices (CVADs), clinicians will maintain a high index of suspicion for nerve injuries when the patient complains of respiratory difficulty or unusual presentations of pain or discomfort.

Practice Criteria

A. Recognize normal and potential anatomical variations of veins, arteries, and nerves used for peripheral or CVAD insertion. Recognize that anatomical variations in these structures are common and can be complex, thus increasing the risk of temporary or permanent nerve injury during VAD insertion and dwell.\(^\text{1-10}\) (I A/P)

B. Selecting specific peripheral venous and arterial puncture sites for the purpose of avoiding nerves is not possible; however, common sites have a greater risk of nerve injury. Venipuncture sites with the greatest risk include:

1. Distal sensory branches of the radial and ulnar nerves for sites in the dorsal hand.
2. Superficial radial nerve at the cephalic vein of the radial wrist.
3. Median nerve on the volar aspects of the wrist.
4. Median and anterior interosseous nerve at or above the antecubital fossa.
5. Lateral and medial antebrachial nerves for the antecubital fossa.
6. Brachial plexus nerve for subclavian and jugular sites.

Arterial sites with the greatest risk include:

1. Brachial (median nerve).
2. Radial (median and radial nerve).
3. Axillary (brachial plexus).

As nerves cross a joint of the upper or lower extremity, there is an increase in neural tissue, increasing the risk of nerve injury in these areas. Motor, sensory, and autonomic nerve injury is possible due to direct nerve puncture or nerve compression.\(^\text{8,9,11-17}\) (I A/P)

C. Review the patient’s medication list for systemic anticoagulant medication(s) prior to making a puncture in a vein or artery. Use appropriate means to control bleeding at attempted and successful sites to reduce the risk of hematoma that can lead to nerve injury due to compression.\(^\text{7,9,18-20}\) (V)

D. Immediately stop the VAD insertion procedure and carefully remove the VAD if the patient reports symptoms of paresthesia, such as radiating electrical pain, tingling, burning, prickly feeling, or numbness. Stop the procedure upon the patient’s request and/or when the patient’s actions indicate severe pain. Inform the licensed independent practitioner (LIP) of the patient’s report of symptoms as early recognition of nerve damage produces a better prognosis. Consultation with an appropriate surgeon (ie, hand specialist) may be required. Details of the patient’s report of symptoms should be documented in the medical record.\(^\text{9,14,21-25}\) (V)

E. Do not use subcutaneous probing techniques or multiple passes of the needle or catheter when performing any puncture procedure as this increases the risk of nerve damage.\(^\text{21,22}\) (V)

F. Immediately remove a peripheral catheter when a patient reports paresthesia-type pain during the dwell of a peripheral catheter, as fluid accumulating in the tissue can lead to nerve compression injuries. Fluid can originate from infiltrated intravenous solutions, hematoma, and edema associated with the inflammatory process of phlebitis and thrombophlebitis.\(^\text{9,19,20,23}\) (V)

G. Perform neurovascular assessment, observing for intensification of paresthesia (eg, pain, burning or localized tingling, numbness) as these may indicate advancing nerve damage including:

1. Neuroma, a mass of connective tissue and nerve fibers that prohibit regeneration of nerves at the injury site. Surgical removal is used to restore function.\(^\text{22,26}\) (V)
2. Compartment syndrome, producing nerve compression resulting in lack of nerve tissue perfusion. Pain progresses from paresthesia to paralysis. Pallor and loss of peripheral pulse indicate an advanced stage of compartment syndrome. Surgical fasciotomy is required within a few hours to prevent loss of the extremity.\(^\text{14,27,28}\) (IV)
3. Complex regional pain syndrome, a chronic, debilitating condition that can result from venipuncture. It is characterized by ongoing neuropathic pain over a regional area; is not proportional to the original injury; and progresses to include sensory, motor, and autonomic changes. Frequently this syndrome spreads to nontraumatized extremities. It requires lifelong management with medications; nerve blocks; and chemical, thermal, or surgical sympathectomy.\(^\text{29,30}\) (IV)

H. In the presence of any CVAD, observe for respiratory difficulties or dyspnea and changes in the eye, such as pupil constriction and upper eyelid drooping.

1. Subclavian and jugular insertion sites can produce damage to the phrenic nerve, which is seen on a

\(^\text{1-10}\) (I A/P)
chest radiograph as an elevated right hemi-diaphragm. Right shoulder and neck pain, distended neck veins, and hiccups may also be present. Phrenic nerve injury can come from direct trauma associated with multiple needle insertions, compression due to the presence of the catheter itself, intra-ventricular tip locations, hemotoma, and infiltration/extravasation of infusing fluids. CVAD removal is indicated.31-38 (V)

2. Peripherally inserted central catheters (PICCs) and jugular inserted catheters have been reported to produce eye changes, which are suggestive of inflammation of cervical sympathetic nerves. Known as Horner’s syndrome, this has been reported with trauma from insertion technique and vein thrombosis.39,40 (V)

REFERENCES

48. CENTRAL VASCULAR ACCESS DEVICE (CVAD) OCCLUSION

Standard

48.1 Central vascular access devices (CVADs) are regularly assessed for patency and proper function as defined by the ability to flush the catheter without resistance and the ability to yield a blood return.

48.2 Thrombolytic agents and clearing agents used to clear occluding substances from a CVAD are administered based on an evaluation of potential causes of occlusion and on the order of a licensed independent practitioner (LIP) or an LIP-approved protocol.

48.3 The LIP is notified if catheter patency is not restored and appropriate alternative actions are implemented, such as radiographic studies to identify catheter tip location or dye studies to evaluate catheter flow. Catheter salvage is preferred over catheter removal for management of CVAD occlusions.

Practice Criteria

A. Reduce the risk for CVAD occlusion by:

1. Using proper flushing and locking procedures (refer to Standard 40, Flushing and Locking).

2. Using the appropriate sequence of catheter clamping and final syringe disconnection based on the type of needleless connector (ie, negative, positive, neutral displacement) to reduce the amount of blood reflux into the CVAD lumen (refer to Standard 34, Needleless Connectors).

3. Checking for incompatibility when 2 or more drugs are infused together; consult with pharmacist when unsure of compatibility.1,2 (V)

4. Identifying medications/solutions at high risk for precipitation if they come into contact with each other. These include alkaline drugs such as phe

nytoin, diazepam, ganciclovir, acyclovir, ampicillin, imipenem, and heparin; acidic drugs such as vancomycin and parenteral nutrition solutions; ceftriaxone and calcium gluconate; and mineral precipitate in parenteral nutrition solutions with increased levels of calcium and phosphate. Reduce risk through adequate flushing with preservative-free 0.9% sodium chloride (USP) between infusions or use separate catheter lumens if available.1,2,7 (IV)

B. Identify signs of CVAD occlusion:

1. Inability to withdraw blood or sluggish blood return.

2. Sluggish flow.

3. Inability to flush or infuse through the CVAD.

4. Frequent occlusion alarms on electronic infusion device.

5. Infiltration/extravasation or swelling/leaking at infusion site.1,2,4,6 (IV)

C. Investigate and evaluate potential causes for a CVAD occlusion:

1. Check for external mechanical causes such as a tight suture at catheter site, kinked/clamped catheter, clogged filter or needleless connector.1,2,5,6 (IV)

2. Suspect precipitation based on the type(s) of administered medications or solutions, observation of the catheter or infusion set for any visible precipitate, history of infusion rate, and flushing frequency.1,2,7 (IV)

3. Suspect thrombotic occlusions based on visible blood in catheter or add-on devices, inability to aspirate blood, sluggish flow.1,3,5 (IV)

D. Do not leave a CVAD with an occlusion untreated; do not leave an occluded CVAD lumen untreated because another lumen is patent.1 (V)

E. Resolve external mechanical causes after checking the infusion system, from the administration set down to the dressing (eg, clamped or kinked catheter).1,2,6 (V)

F. Review the patient’s medication record and collaborate with the pharmacist and the LIP regarding an appropriate intervention when the suspected cause...
of occlusion is medication precipitate or lipid residue. Treatment of these occlusions includes instilling an amount of a catheter-clearance agent based on the catheter lumen priming volume and allowing it to dwell for 20 to 60 minutes:

1. Acidic drug precipitate (low pH, less than 6): 0.1N hydrochloric acid.
2. Alkaline drug precipitate (pH greater than 7): sodium bicarbonate 8.4% or sodium hydroxide 0.1 mmol/L.
3. Lipid residue: 70% ethanol in a sufficient volume to fill the catheter lumen; for pediatric patients, a dose of 0.55 mL/kg has been used with no more than 3 mL maximum. Use ethanol with caution with polyurethane CVADs as ethanol may damage the catheter material; refer to vascular access device (VAD) manufacturers’ directions for use regarding exposure to any form of alcohol.1,2,4,6

G. Review the patient’s medication record and collaborate with the pharmacist and the LIP regarding an appropriate intervention when the suspected cause of occlusion is thrombosis. Use a thrombolytic agent for suspected thrombotic occlusion:

1. Instillation of tissue plasminogen activator (tPA, alteplase) 2 mg/2 mL, which is allowed to remain in CVAD lumen for 30 minutes to 2 hours and repeated 1 time if necessary, is recommended as safe and effective in restoring catheter patency in neonatal, pediatric, and adult patients. For pediatric patients weighing 30 kg or less, use the same concentration; however, the volume of tPA should be equal to 110% of the catheter priming volume.1,3-4

2. Instillation of tPA based on manufacturers’ directions for use, as above, is recommended in current guidelines. While lower tPA doses, use of cryopreserved aliquots of alteplase, and alteplase aliquoting to increase volume (eg, greater than 2 mL) for hemodialysis catheters have been reported in the literature and may be part of organizational protocols, there is limited research available to support the efficacy of thrombolytic drugs for alternative dosing.1,9-11

3. Consider use of tPA in community and long-term care settings.1 (IV)

4. Stop all infusions, when possible, if treating a multilumen CVAD to optimize thrombolysis during the dwell time, and facilitate maximum contact between the thrombolytic agent and the thrombus on the internal catheter lumen and external catheter surface at or near the tip.1 (IV)

5. Infusion of low doses of alteplase to manage occlusions in hemodialysis catheters (eg, 1-4 mg) over 30 minutes and up to 3 to 4 hours has been reported in both adult and pediatric populations when there is recurrent occlusion after multiple direct alteplase instillations. Alteplase infusion has also been reported as safe and efficacious in critically ill pediatric patients.1,12 (IV)

6. Other additional thrombolytic agents under investigation for treatment of CVAD occlusions include recombinant urokinase, retaplast, tenectaplast, and alimeprase.1,2 (V)

H. Recognize that thrombi in and around the CVAD facilitate adhesion of bacteria, leading to colonization and potentially infection. Studies suggest that tPA use should heighten the awareness of risk for infection in these patients.1,3,14 (V)

I. Avoid applying excessive force to an occluded CVAD when a thrombolytic or clearing agent is instilled to reduce the risk of causing an intraluminal level of pressure that could cause catheter damage. A negative-pressure technique should be used to reduce the risk of catheter damage and to remove intraluminal fluid so that the clearing agent has a better opportunity to reach the occluding substance.1-4 (V)

J. Use a syringe no smaller than 10 mL for administration of a thrombolytic or catheter clearance agent.1 (IV)

K. Aspirate degradation products and discard prior to flushing the lumen.1 (V)

L. Consider alternative actions such as a referral to interventional radiology if the CVAD clearance procedure does not result in catheter patency; catheter removal should be considered if catheter patency is not restored.1-3 (V)

M. Collaborate with LIP to obtain orders and diagnostic tests to verify suspected CVAD malposition or pinch-off syndrome. Intermittent or positional occlusion may be symptoms of pinch-off syndrome, the compression of the catheter between the clavicle and first rib alongside the subclavian vein (refer to Standard 51, Catheter Damage [Embolism, Repair, Exchange]); Standard 53, Central Vascular Access Device [CVAD] Malposition).

N. Monitor outcomes, including causes of occlusions in types of CVADs, treatment success or failure, and other measures required. Identify barriers to implementing CVAD occlusion prevention and interventions, and implement appropriate strategies including policies and procedures and clinician education and training (see Standard 6, Quality Improvement).1 (V)

REFERENCES

Note: All electronic references in this section were accessed October 2, 2015.

Practice Criteria

A. Assess for signs and symptoms of a VAD-related infection which may include, but is not limited to, erythema; edema; any pain or tenderness or drainage; fluid in the subcutaneous pocket of a totally implanted intravascular device or subcutaneous tunnel for any tunneled catheter; induration at the exit site or over the pocket; spontaneous rupture and drainage; necrosis of the overlying skin at the VAD insertion site; and/or body temperature elevation. Immediately notify the licensed independent practitioner (LIP) when signs and symptoms of a VAD-related infection are present, and implement planned interventions.1 (IV)

B. Consider site selection for VAD placement as a strategy to prevent infection. To minimize the risk of catheter-related infection with a nontunneled central vascular access device (CVAD), the subclavian vein is recommended in adult patients, rather than the jugular or femoral (refer to Standard 27, Site Selection).

C. Remove a peripheral venous catheter if the patient develops symptoms of infection (eg, erythema extending at least 1 cm from the insertion site, induration, exudate, fever with no other obvious source of infection) or the patient reports any pain or tenderness associated with the catheter.1,3 (IV)

D. Do not remove a functioning CVAD based solely on temperature elevation and the absence of confirmatory evidence of catheter-related infection. Use clinical judgment regarding the appropriateness of removing the catheter if an infection is evidenced elsewhere or if a noninfectious cause of fever is suspected.2,4 (IV)

E. Collaborate with the LIP and patient to collectively determine if the CVAD can be salvaged. For hemo-dynamically stable outpatients with catheter-related bloodstream infection (CR-BSI), catheter salvage may be a safe and appropriate strategy. Removal of the CVAD is required if there is clinical deterioration or persisting or relapsing bacteremia. The insertion of a new CVAD at a new site should be a collaborative decision based on the specific risks and benefits for each patient. Factors to consider in the decision to salvage a catheter include:

1. The type of VAD (eg, percutaneous versus surgically inserted long-term catheter).
2. Difficulty with inserting a new CVAD.
4. The infecting organism(s) as confirmed by paired blood cultures.
5. The presence of other complicating conditions including, but not limited to, severe sepsis, suppurative thrombophlebitis, endocarditis, or the presence of vascular or other hardware (eg, a pacemaker).1,5-8 (IV)

Standard

49. INFECTION

Standard

49.1 The clinician implements infection prevention measures with the goal of preventing infusion- and vascular access device (VAD)-related infections.

49.2 The clinician assesses the patient with a VAD for signs and/or symptoms of infection and educates the patient and/or caregiver about infection, risks, any interventions, and any required follow-up.
F. Anticipate the removal of a short-term CVAD (in situ less than or equal to 14 days) in a pediatric patient with an uncomplicated CR-BSI and treat with systemic antibiotics for at least 7 to 14 days based on the pathogen. Infections with *Staphylococcus aureus*, gram-negative bacilli, or *Candida* require immediate removal of the infected CVAD and a defined course of systemic antibiotic therapy, except in rare circumstances when no alternative venous access is available. Patients with a long-term CVAD and an uncomplicated CR-BSI because of coagulase-negative *Staphylococcus* or *Enterococcus* may retain the CVAD and complete a course of systemic antibiotics with the use of antibiotic lock therapy. Closely monitor and clinically evaluate pediatric patients treated without catheter removal, including additional blood cultures and the use of antibiotic lock therapy with systemic therapy for catheter salvage.8,9 (V)

G. Consider the use a prophylactic antimicrobial lock solution in a patient with a long-term CVAD who has a history of multiple CR-BSIs despite optimal maximal adherence to aseptic technique. Aspirate all antimicrobial locking solutions from the CVAD lumen at the end of the locking period (refer to Standard 40, Flushing and Locking).

H. Remove a CVAD from a patient with CR-BSI associated with any of the following conditions: severe sepsis; suppurative thrombophlebitis; endocarditis; bloodstream infection that continues despite greater than 72 hours of antimicrobial therapy to which the infecting microbes are susceptible; or infections due to *S. aureus*, *P. aeruginosa*, fungi, or mycobacteria following collaboration with the LIP.1,4 (IV)

I. Do not use a guidewire exchange to replace a non-tunneled catheter suspected of infection.2 (V)

J. Consider a catheter exchange procedure when other vascular access sites are limited and/or bleeding disorders are present. Consider an antimicrobial-impregnated catheter with an anti-infective intraluminal surface for catheter exchange.1 (IV)

K. Collect a specimen of purulent exudates from a peripheral or CVAD exit site for culture and gram staining to determine the presence of gram-negative or gram-positive bacteria as ordered by an LIP.1 (IV)

L. Do not routinely culture the CVAD tip upon removal unless the patient has a suspected CR-BSI. Catheter colonization may be detected but does not indicate the presence of a bloodstream infection. This practice results in inappropriate use of anti-infective medications, thus increasing the risk of emergence of antimicrobial resistance. Recognize that the catheter tip culture will identify microorganisms on the external catheter and not microorganisms located on the intraluminal surface.1 (IV)

M. Culture the tip of short-term central vascular and arterial catheters suspected of being the cause of a CR-BSI using a semiquantitative (roll-plate) method or quantitative (sonication) method upon removal. Culture the introducer/sheath tip from a pulmonary artery catheter when a CR-BSI is suspected.1 (IV)

N. Culture the reservoir contents of a port body of an implanted port and the catheter tip when it is removed for suspected CR-BSI.1 (IV)

O. Consider contamination of the infusate (such as parenteral solution, intravenous medications, or blood products) as a source of infection. This is a rare event, but an infusate can become contaminated during the manufacturing process (intrinsic contamination) or during its preparation or administration in the patient care setting (extrinsic contamination). An infusate-related bloodstream infection is the isolation of the same organism from the infusate and from separate percutaneous blood cultures, with no other identifiable source of infection.2,7-9 (IV) (see Standard 43, Phlebotomy).

P. For a suspected CR-BSI, obtain paired blood samples for culture, drawn from the catheter and a peripheral vein, before the initiation of antimicrobial therapy. Blood cultures from both the catheter and venipuncture must be positive for the same organism with clinical signs and symptoms and no other recognized source. Consider quantitative blood cultures or the differential period of central line culture versus peripheral blood culture positivity >2 hours for the diagnosis of CR-BSI (see Standard 43, Phlebotomy).1,6,10,11 (IV)

REFERENCES

Note: All electronic references in this section were accessed October 5, 2015.

50. AIR EMBOLISM

Standard

50.1 All add-on devices, needleless connectors, and administration sets are of a luer-lock design to ensure a secure junction.

50.2 Air is always purged from syringes, administration sets, needleless connectors, and any other add-on devices.

50.3 Patients and/or caregivers managing infusion therapy in non–acute care settings are instructed in how to prevent an air embolism and implement critical actions if an air embolism is suspected.

Practice Criteria

A. Instruct the patient and/or caregivers not to disconnect or reconnect any intravenous (IV) administration sets or connectors from the catheter hub unless they have been instructed in IV administration and evaluated as competent in the procedure, such as with patients in the home care setting. 1-5 (IV)

B. Never use scissors or razors near the catheter. 1,6,7 (IV)

C. For all vascular access devices (VADs), use the following techniques to prevent air embolism:

1. Priming and air purging of all administration sets.

2. Patient positioning and catheter-occluding procedures during removal.

3. Using luer-locking connections, equipment with safety features designed to detect or prevent air embolism such as administration sets with air-eliminating filters and electronic infusion devices with air sensors.

4. Not leaving unprimed administration sets attached to solution containers.

5. Ensuring the VAD is clamped before changing administration sets or needleless connectors. 1,2,8,10 (IV)

D. Implement special precautions to prevent air embolism during placement and removal of central vascular access devices (CVADs), including but not limited to the following points: 10-11; (IV)

1. Place patient in a supine position during CVAD removal, or Trendelenburg position if tolerated, so the CVAD insertion site is at or below the level of the heart. 8 (IV)

2. Instruct the patient to perform a Valsalva’s maneuver at the appropriate point during catheter withdrawal. The Valsalva’s maneuver may be contraindicated because it increases intra-abdominal and intrathoracic pressure, which reduces cardiac output and affects blood pressure. Contraindications include, but are not limited to, patients with cardiac dysfunction, recent myocardial infarction, glaucoma, and retinopathy. 12-15 (I A/P)

 a. When the Valsalva’s maneuver is contraindicated, use a Trendelenburg or left lateral decubitus position, or have the patient hold her or his breath as applicable. 8,16 (IV)

3. After removal of a CVAD, apply digital pressure until hemostasis is achieved by using manual compression with a sterile dry gauze pad. 1-8 (IV)

4. Apply a sterile petroleum-based ointment with a sterile dressing to the access site for at least 24 hours to seal the skin-to-vein tract, and decrease the risk of air embolus. 1-8 (IV)

5. Encourage the patient to remain in a flat or reclining position, if able, for 30 minutes after removal. While documentation of air embolism during removal of a peripherally inserted central catheter (PICC) has not been reported, the exit site could be at the same level as the patient’s heart, increasing the risk of air entering through an intact skin-to-vein tract and fibrin sheath. 2 (V)

E. Suspect air embolism with the sudden onset of dyspnea, continued coughing, breathlessness, chest pain, hypotension, tachyarrhythmias, wheezing, tachypnea, altered mental status, altered speech, changes in facial appearance, numbness, or paralysis as clinical events from air emboli produce cardiopulmonary and neurological signs and symptoms. 8,11,16,17 (IV)

1. Immediately take the necessary action to prevent more air from entering the bloodstream by
closing, folding, clamping, or covering the existing catheter or by covering the puncture site with an air-occlusive dressing or pad if the catheter has been removed.8,17 (IV)

2. Immediately place the patient on the left side in the Trendelenburg position or in the left lateral decubitus position if not contraindicated by other conditions such as increased intracranial pressure, eye surgery, or severe cardiac or respiratory diseases. The goal is to trap the air in the lower portion of the right ventricle.1,8,16 (IV)

3. Implement additional actions:
 a. Initiate code team if in acute care setting or call emergency medical services if in patient’s home or alternative care setting.
 b. Notify licensed independent practitioner (LIP).
 c. Provide 100% oxygen if available and further support actions as needed.1,2,8 (V)

REFERENCES

Note: All references in this section were accessed September 3, 2015.

51. CATHETER DAMAGE (EMBOLISM, REPAIR, EXCHANGE)

Standard

51.1 Assessment of the patient’s risk-to-benefit ratio is performed prior to repair or exchange of the vascular access catheter.

51.2 Catheter repair is initiated upon the order of a licensed independent practitioner (LIP).

51.3 Central vascular access device (CVAD) exchange is initiated upon the order of an LIP.

51.4 The clinician implements maximal sterile barrier (MSB) precautions for the CVAD exchange procedure.

51.5 After completion of the exchange procedure, appropriate CVAD tip location is determined and documented prior to resumption of the prescribed therapy.

Practice Criteria

I. General

A. Assess vascular access device (VAD) function using a 10-mL syringe:
 1. Do not forcefully push against resistance, preventing catheter damage or rupture.
 2. If VAD has blood return, no resistance to flushing, and no other signs/symptoms of complications, use syringes appropriately sized for the medication being injected (refer to Standard 40, Flushing and Locking).

B. Recognize that catheter dysfunction, such as the inability to aspirate blood with localized pain and/or subcutaneous swelling, may be an indication of catheter embolism; additionally, leaking at the site can indicate catheter rupture. In the presence of these signs and symptoms, evaluate catheter integrity before using the VAD for infusions or blood sampling.1,4 (IV)

C. Catheter damage increases the risk for catheter fracture and embolization, air emboli, bleeding, catheter-lumen occlusion, and bloodstream infection. Intervention in a timely manner is recommended to
reduce the risk of these complications. Options to consider for managing a damaged or ruptured catheter include use of a repair procedure, an exchange procedure, or insertion of a new catheter at a different site. Factors to consider in making this decision include, but are not limited to, the patient's age, immune status, length of time remaining on infusion therapy, characteristics of infusion therapy (eg, osmolarity), external catheter length, and resulting changes in proper tip location with repair.5-12 (V)

D. Recognize the early signs and symptoms of pinch-off syndrome in subclavian vein insertion sites, including difficulty aspirating, resistance to flushing, patient report of pain, possible swelling at the insertion site, and a change in the clinical picture with arm or shoulder movement.2-4,8 (IV)

II. Catheter Embolism
A. Prevent catheter embolism through the following actions:
 1. Do not withdraw the catheter or wire from the needle during insertion.
 2. Do not use power injection with VADs that are not labeled for this purpose.5,8,13 (IV)

B. The most frequent mechanisms of catheter fragmentation are catheter pinch-off syndrome, catheter damage during catheter exchange, separation of the catheter from an implanted port, and fracture of a portion of an implanted port catheter.
 1. Suspect catheter embolism when the patient exhibits symptoms such as palpitations, arrhythmias, dyspnea, cough, or thoracic pain that are not associated with the patient's primary disease or comorbidities. In some cases there are no signs or symptoms, but damage often occurs after lengthy usage.2-4,6,8,14-17 (IV)
 2. Catheter separation may occur at the lumen-hub junction or other external connections, with resultant bleeding or exsanguination. Gently tug on all connections after insertion to verify a secure hold; all connections must be visible during hemodialysis.18,19 (V)
 3. For totally implanted CVADs via the subclavian vein with increased risk for catheter embolism due to pinch-off syndrome, consider regular chest radiograph assessments for this syndrome and for catheter embolism.3,5,8,14,17 (IV)

C. Examine VAD catheter tip and length after removal, comparing the removed length to the inserted length for damage and possible fragmentation. If damage is seen or suspected, a chest radiograph or further evaluation may be warranted.3,4,8,15 (IV)

D. The clinician should carefully assess the patient for signs or symptoms of catheter embolism and for catheter damage when VAD removal is difficult.4,13 (V)

III. Catheter Repair
A. Clamp or seal catheter (eg, close an existing clamp, add a clamp, cover the damaged area with adhesive dressing material, or fold the external segment and secure) between the patient and the damaged area to prevent air embolism or bleeding from the device immediately upon discovery of catheter damage. Label the damaged catheter “Do Not Use” while waiting for the repair procedure to be performed.8,20 (V)

B. Use a repair kit designed for the device being repaired and according to the manufacturer's directions for use. If no device-specific repair kit is available, consider other alternatives, such as catheter exchange or insertion of a new catheter.9,10,21,22 (V)

C. Perform regular assessments after repair to confirm the integrity of the repair, and identify any continuing problems, as the repaired catheter may not have the same strength as the original catheter. Remove the VAD if the repair was unsuccessful or the device is unable to be repaired.3,9,21 (V)

IV. Catheter Exchange
A. Prior to performing a CVAD exchange, the clinician assesses the risk-benefit of the procedure for all patients, with particular attention to high-risk populations such as:
 1. Patients with burns or transplants.23,24 (IV)
 2. Neonates and infants.25-27 (IV)
 3. Patients with an infection or suspected infection.28-30 (IV)

B. A catheter exchange with or without a guidewire may be considered if there is a need for a different type of catheter, a catheter is malpositioned or malfunctioning and venous access is limited, or other sites are unavailable.
 1. Nontunneled catheters may be exchanged if there is no evidence of infection.31 (I)
 2. Tunneled cuffed catheters may be exchanged while avoiding infected tunnel or local site infection.25,27,32 (IV)
 3. If there is limited vascular access or unavailable sites in the presence of an actual or suspected infected catheter or catheter-related bloodstream infection (CR-BSI), consider an antimicrobial impregnated, coated, or bonded catheter for catheter exchange.23,28,33 (IV)

C. During a CVAD exchange procedure:
 1. Use maximal sterile barrier (MSB) precautions.
 2. Use techniques to reduce the risk of air embolism.
 3. Obtain a radiograph or use other approved technologies to confirm correct CVAD tip location prior to initiating or resuming prescribed therapies.31,34 (I)
D. Routine exchanges are not necessary for CVADs that are functioning and without evidence of local or systemic complications.31,34 (1)

REFERENCES

Note: All electronic references in this section were accessed September 3, 2015.

52. CENTRAL VASCULAR ACCESS DEVICE (CVAD)-ASSOCIATED VENOUS THROMBOSIS

Standard

52.1 The clinician assesses the patient for suspected central vascular access device (CVAD)-associated venous thrombosis; provides timely and appropriate information to the licensed independent practitioner (LIP); and assesses patient response to treatment.

Practice Criteria

A. Assess the patient for risk factors for venous thrombosis before CVAD insertion. Risk factors include, but are not limited to:
1. History of deep vein thrombosis.
2. Presence of chronic diseases associated with a hypercoagulable state such as cancer, diabetes, irritable bowel syndrome, congenital heart disease, or end-stage renal failure.
3. Surgical and trauma patients.
4. Critical care patients; hyperglycemia in nondiabetic children in critical care may be a predictor of venous thromboembolism.
6. Pregnancy or the use of oral contraceptives.
7. Age extremes in young children and older adults.
8. History of multiple CVADs, especially with difficult or traumatic insertion and the presence of other intravascular devices (eg, pacemakers).1-5 (II)

B. Choose the type of CVAD with the least risk of thrombosis.
1. Peripherally inserted central catheters (PICCs) are associated with higher rates of deep vein thrombosis (DVT) than other CVADs due to insertion into veins with smaller diameter and greater movement in the upper extremity. Critical care patients and those with cancer are at a greater risk of DVT with PICCs when compared to other CVADs. PICC insertion sites in the antecubital fossa have higher rates of DVT than mid-upper arm insertion sites. PICC insertion through the internal jugular vein rather than veins of the upper extremity is associated with lower rates of DVT than arm veins.6,7 (I)
2. Thrombosis rates for subclavian and internal jugular CVAD are comparable for long-term use in patients with cancer.8 (II)
3. For short-term use, subclavian sites have lower DVT rates than femoral sites, but there is no significant difference between jugular and femoral sites.8 (II)

C. For PICCs, measure the vein diameter using ultrasound before insertion. Choose a catheter with a catheter-to-vein ratio of 45% or less.
1. A study of 6Fr triple-lumen PICCs was stopped before completion due to an unacceptably high rate of DVT.
2. 5Fr and 6Fr PICCs develop DVT more rapidly in patients with cancer when compared to smaller-diameter PICCs (eg, 4Fr).
3. Reverse taper on the hub end of the catheter, resulting in the largest outer diameter being inserted into the smallest vein diameter, is thought to be a contributing factor. However, 1 comparison study between tapered and nontapered PICCs could not find a difference between the catheter design, although the rate for both catheters was high. Trimming a PICC to a patient-specific length can result in the largest diameter of a reverse-tapered PICC inserted into the vein and has been suggested as a factor in DVT.1-7,9-13 (I)

D. Ensure that all CVAD tips are located in the lower third of the superior vena cava or cavoatrial junction as tips located in the mid-to-upper portion of the superior vena cava are associated with greater rates of DVT. Adjustment of PICCs to achieve correct tip location is not reported to be associated with an increased rate of DVT (see Standard 23, Central Vascular Access Device [CVAD] Tip Location).6,14-16 (II)

E. Recognize that the majority of CVAD-associated DVT is clinically silent and does not produce overt signs and symptoms. Clinical signs and symptoms are related to obstruction of venous blood flow and include, but are not limited to:
1. Pain in the extremity, shoulder, neck, or chest.
2. Edema in the extremity, shoulder, neck, or chest.
3. Erythema in the extremity.
4. Engorged peripheral veins on the extremity, shoulder, neck or chest wall.
5. Difficulty with neck or extremity motion.8,14 (II)

F. Measure upper-arm circumference before insertion of a PICC and when clinically indicated to assess the presence of edema and possible DVT. Take this measurement 10 cm above the antecubital fossa; assess for the location and other characteristics such as pitting or nonpitting edema (refer to Standard 33, Vascular Access Site Preparation and Device Placement).

G. Anticipate diagnosis of CVAD-associated DVT with color-flow Doppler ultrasound in veins of the upper extremity.
extremity because it is noninvasive and avoids exposure to radiation. Venography with contrast injection, computed tomography venography, or magnetic resonance venography may also be used to assess veins that are obscured by the clavicle or ribs. 1,17 (II)

H. Anticipate prescription of therapeutic doses of anticoagulant medication in the presence of upper extremity DVT for at least 3 months after CVAD removal. For CVADs with a longer dwell time, continue the treatment for as long as the CVAD is in situ. 18 (II)

I. CVAD flushing and locking procedures have no effect on catheter-associated venous thrombosis, as the technique and solutions used are directed to the internal CVAD lumen rather than the vein lumen. 19 (V)

J. Do not remove a CVAD in the presence of DVT when the catheter is correctly positioned at the cavoatrial junction, the catheter is functioning correctly with a blood return, and there is no evidence of any infection (refer to Standard 44, Vascular Access Device [VAD] Removal).

K. Encourage the patient to use nonpharmacologic strategies for thrombosis prevention whenever possible, including early mobilization of the catheterized extremity, performance of normal activities of daily living, gentle limb exercise, and adequate hydration. 14 (II)

L. Prophylaxis with anticoagulant therapy is not recommended, although a meta-analysis in cancer patients with tunneled cuffed catheters and implanted ports found that symptomatic DVT is reduced with heparin and asymptomatic DVT is reduced with warfarin. Another retrospective analysis in cancer patients suggests that antiplatelet agents may protect against DVT in patients with PICCs; however, additional study is needed. 20-22 (I)

M. Recognize that catheter-related bloodstream infection and symptomatic catheter-associated DVT may develop simultaneously and is probably caused by the fibrin sheath supporting the development of thrombosis and allowing for adherence of organisms. This is a greater problem in critically ill patients as opposed to home care patients as no correlation between infection, lumen occlusion, and thrombosis was reported in a study of cancer patients receiving home parenteral nutrition. A more recent study showed an increased risk of catheter-associated bloodstream infection in CVADs that had been treated with alteplase for malfunctioning. 23-26 (IV)

N. Recognize that pulmonary emboli and postthrombotic syndrome are associated with upper extremity DVT. 1 (IV)

REFERENCES

Note: All electronic references in this section were accessed September 3, 2015.

53. CENTRAL VASCULAR ACCESS DEVICE (CVAD) MALPOSITION

Standard

53.1 The clinician verifies the documented anatomic location of the central vascular access device (CVAD) tip upon insertion prior to initial infusion through the catheter.

Practice Criteria

A. Recognize normal vascular, intrathoracic, intraperitoneal, and neck anatomy and its relationship to acceptable CVAD tip location. CVAD tips move due to patient position, respiration, and arm movement. Descent of diaphragm and abdominal contents with position change from lying to standing, obesity, and breast tissue are associated with a change in CVAD tip position.1,2 (I A/P)

B. Recognize that primary CVAD malposition may occur during the insertion procedure, resulting in intravascular or extravascular tip location.

1. Intravascular malposition includes the aorta; contralateral innominate and subclavian veins; ipsilateral or contralateral internal jugular veins and tributaries; azygos vein; right or left internal thoracic vein; pericardiophrenic vein; internal mammary vein; deep in the right atrium (more than 2 cm below cavoatrial junction); the right ventricle; and a number of small tributary veins of the innominate and superior vena cava (SVC). Femoral insertion sites may produce malposition of the catheter tip in the lumbar, iliolumbar, and common iliac veins. Malpositions are reported with and without difficult guidewire and/or catheter advancement. Critical care patients may have a tendency for a higher rate of malposition on peripherally inserted central catheter (PICC) insertion because of difficulty in patient positioning, use of mechanical ventilation, and different venous blood flow characteristics. Primary malposition with PICCs is reported to be approximately 3 times more common than with other CVADs.1,3-9 (I A/P)

2. Extravascular malposition includes tip location in the mediastium producing infiltration/extravasation; in the pleura producing hemothorax or pleural effusion; in the pericardium producing pericardial effusion and cardiac tamponade; and in the peritoneum producing intra-abdominal bleeding.2,4,10-12 (I A/P)

C. Recognize that acquired and congenital anatomical variations cause CVAD malposition during insertion.

1. Acquired abnormalities include stenosis, thrombus, and malignant or benign lesions compressing the vein.

2. Congenital abnormalities include persistent left superior vena cava (PLSVC) and variations of the inferior vena cava, azygos vein, and pulmonary veins. PLSVC is the most common form of congenital anomaly and will probably be diagnosed until placement of a CVAD is required. PLSVC may be present with or without other congenital cardiac anomalies. Before using a CVAD in a PLSVC, cardiac imaging studies are needed to determine blood flow characteristics. Blood flow into the left atrium and the presence of right-to-left cardiac shunting pose a significant risk for air or thrombotic emboli to a variety of anatomic locations (eg, brain, kidney) and may require repositioning the CVAD.2,13,14 (I A/P)
D. Use dynamic ultrasound during the insertion procedure to reduce the risk of inadvertent arterial insertion. Ultrasound is also useful to rule out cephalad tip orientation in the jugular vein prior to removal of the sterile field (refer to Standard 22, Vascular Visualization).

E. Use tip location technology to enhance awareness of primary CVAD malposition during the insertion procedure (refer to Standard 23, Central Vascular Access Device [CVAD] Tip Location).

F. If arterial placement of a CVAD is suspected, assess waveforms using a pressure transducer, blood gas values for a sample taken from the CVAD, or computed tomography (CT) angiogram with contrast. Pulsatile flow and color of the blood are not always reliable indicators for arterial location. 2,6,15 (I A/P)

G. Recognize that secondary CVAD malposition may occur at any time during the catheter dwell time.

1. Secondary intravascular malposition is also known as tip migration and is related to sporadic changes in intrathoracic pressure (eg, coughing, vomiting); original tip located high in the SVC; deep vein thrombosis; congestive heart failure; neck or arm movement; and positive pressure ventilation. The most common locations for secondary CVAD malposition include internal jugular; innominate (brachiocephalic); subclavian, axillary, and ayzgos veins; and deep in the right atrium. Risk factors for implanted port tip migration are reported to be an original tip positioned high in the SVC and presence of lung cancer. 1,16-18 (I A/P)

2. Secondary extravascular CVAD malposition is associated with erosion of the catheter tip through the vessel wall, usually into a low-pressure space with the risk of bleeding into that space. Fistula formation between veins and arteries, veins and other structures (eg, trachea) is possible. Cardiac tamponade from a CVAD is associated with fluid infusion and may be diagnosed with echocardiogram. 2,17,19,20 (I A/P)

H. Recognize that the growth of infants and children results in suboptimal intravascular tip location when a CVAD is indwelling for extended periods of time. Correlate growth to tip location, and plan for CVAD changes as needed. 21 (V)

I. Before and after using a power-injectable PICC for CT contrast agent injection, a scout scan, or torogram, is recommended to determine the current PICC tip location. Power injection is reported to cause PICC tip migration. Tip migration may be related to a sudden change in viscosity between the contrast agent in the catheter lumen and the postprocedure flush of sodium chloride. No evidence for other types of CVAD malposition related to power injection is available. 22-24 (IV)

J. Assess the patient and the CVAD for signs and symptoms of catheter dysfunction and associated complications before each CVAD infusion as these factors will be the first indication of a problem:

1. Absence of blood return from all catheter lumens.
2. Changes in blood color and pulsatility of the blood return from all catheter lumens.
3. Difficulty or inability to flush the CVAD.
4. Arterial versus venous waveform from an attached pressure transducer.
5. Atrial and ventricular dysrhythmias.
6. Changes in blood pressure and/or heart rate.
7. Shoulder, chest, or back pain.
8. Edema in the neck or shoulder.
9. Changes in respiration.
10. Complaints of hearing gurgling or flow stream sounds on the ipsilateral side.
11. Paresthesia and neurological effects due to retrograde infusion into the intracranial venous sinuses. 2,10,14,17,25 (IV)

K. Anticipate diagnostic tests including chest radiograph with or without contrast injection, fluoroscopy, echocardiogram, CT scan, and/or magnetic resonance imaging (MRI) to diagnose secondary malposition based on clinical signs and symptoms and problems with functionality of the catheter. Provide the radiology department with clinical information to enhance their ability to identify the problem. Routine chest radiograph at specific intervals may not identify tip migration because of the sporadic and unpredictable nature of this type of malposition. Chest radiographs for diagnostic purposes should include catheter tip location. 2,6,7,13,16,18,22 (IV)

L. Manage malposition depending upon the location of the CVAD, the continued need for infusion therapy, and the patient’s acuity. Collaboration with the licensed independent practitioner (LIP) may be required.

1. For PICCs with intracardiac location that is more than 2 cm below the cavoatrial junction, retract catheter based on electrocardiogram (ECG) results, or from measurement of the specific distance on the chest radiograph.

2. For PICCs with jugular vein location, noninvasive techniques are preferred. Reported effective methods include elevating the patient’s head, flushing the catheter, walking, or a combination of these techniques. Invasive techniques include partial PICC retraction with guidewire techniques, catheter flushing while advancing, and retraction and advancement under fluoroscopy.

3. Withdrawal of large catheters from an accessed artery (eg, carotid) with site compression increases risk of brain ischemia from lack of blood flow, hematoma, or emboli. Consult with the LIP
before removal from arteries to determine if surgical removal or use of a percutaneous closure device is most appropriate.

4. Fluid aspiration through the CVAD before removal may be indicated if cardiac tamponade is suspected. Consult with the LIP.

5. Removal from other extravascular tip locations may cause hematoma or pleural or peritoneal effusions.

6. Removal when an infiltration or extravasation has occurred will require a treatment plan for the specific medication involved.2,6,26-28 (IV)

M. Withhold infusion through a malpositioned catheter until proper tip position has been established. Assess the infusion therapy being administered and, if possible, insert a short peripheral catheter to continue therapy. If the infusion therapy is not possible through a peripheral vein, the nurse should assess the potential risk for discontinuing therapy and consult with the LIP regarding changing the infusion therapy until the proper CVAD tip location can be reestablished.14,29 (V)

N. Arm movement, body habitus, patient manipulation (eg, Twiddler’s syndrome), and inadequate catheter stabilization cause CVAD dislodgment (movement of the CVAD into or out of the insertion site), resulting in changes of the external catheter length and alteration of CVAD tip location.

1. Never advance any external portion of the CVAD that has been in contact with skin into the insertion site. No antiseptic agent or technique applied to skin or the external catheter will render skin or the catheter to be sterile, and no studies have established an acceptable length of time after insertion for such catheter manipulation.

2. Measure the external CVAD length and compare to the external CVAD length documented at insertion. Dislodgment could indicate the tip location is suboptimal, increasing the risk for catheter-related thrombosis.

3. Management may require catheter exchange or removal and insertion at a new site.29,30 (V)

REFERENCES

Section Eight: Other Infusion Devices

Section Standards
I. To ensure patient safety, the clinician is competent in the management of intraspinal, intraosseous (IO), and subcutaneous devices, including knowledge of anatomy, physiology, infusion administration, and management techniques aimed at maintaining access and reducing risk of complications.
II. Intraspinal, IO, and subcutaneous access and medication/solution infusion are initiated upon the order of a licensed independent practitioner (LIP).
III. Insertion, care and management, and complication management for intraspinal, IO, and subcutaneous access are established in organizational policies, procedures, and/or practice guidelines.

54. INTRASPINAL ACCESS DEVICES

Standard
54.1 Intraspinal access devices and administration sets are identified and labeled as a specialized infusion administration system and differentiated from other infusion administration and access systems.
54.2 Only preservative-free medications are administered via the intraspinal route.
54.3 Removal of a temporary intraspinal access device (intrathecal and epidural) is performed either by or upon the order of a licensed independent practitioner (LIP) in accordance with rules and regulations promulgated by the state’s Board of Nursing and in accordance with organizational policy. Removal of long-term implanted ports/reservoirs/pumps or tunneled intraspinal devices are considered surgical procedures.

Practice Criteria
A. Anticipate intraspinal (epidural/intrathecal) infusion administration for patients in practice settings from acute care to outpatient and home care who require pain management (eg, during/after a surgical procedure, women in labor, chronic malignant and non-malignant pain) and for spasticity control. Infusions may include opioids alone, opioids in combination with dilute local anesthetics, and opioids in combination with local anesthetics and clonidine. Antineoplastic agents and pain medications may be administered via an intraventricular access device.1-9 (IV)
B. Provide comprehensive education to clinicians who care for patients receiving intraspinal infusions to include the following content: related anatomy and physiology; pharmacology; patient assessment and monitoring; use and troubleshooting of access devices; side effect management; recognition and management of complications and emergency situations; device removal; patient and caregiver education; and review of organizational policies and procedures (see Standard 5, Competency Assessment and Validation).5 (V)
C. Administer only preservative-free medications via an intraspinal route; these include, but are not limited to, morphine, fentanyl, hydromorphone, ziconotide, clonidine, bupivacaine, baclofen, and 0.9% sodium chloride (USP).1,4,6 (V)
D. Titrate medications carefully during medication initiation when converting from one route to another (eg, intravenous to epidural to intrathecal), when converting from one medication to another, and when adding adjuvant medications. Dosing and opioid conversion guidelines should be used, and dosing should start extremely low when converting from one medication to another.1,2 (V)
I. Administer continuous infusions using an electronic infusion device with anti–free-flow protection.4,6,11 (V)

F. Maintain strict aseptic technique while wearing a mask and sterile gloves during any intraspinal access or maintenance procedure.4,6,10,11 (V)

G. Confirm proper placement of the intraspinal access device before any infusion or medication administration.3,6,11 (V)

1. Aspirate epidural access devices prior to medication administration to ascertain the absence of spinal fluid and blood; if greater than 0.5 mL serous fluid is aspirated, notify the LIP, and do not administer the medication.

2. Aspirate intrathecal and ventricular access devices prior to medication administration to ascertain the presence of spinal fluid and the absence of blood.

H. Filter infusion medications using a surfactant-free 0.2-micron filter.6,11 (V)

I. Administer continuous infusions using an electronic infusion device with anti–free-flow protection. Patient-controlled analgesia may be used with epidural infusions.5,7,8 (V)

J. Perform the access procedure and medication filling of an implanted intraspinal delivery system with a medication reservoir at regular intervals in accordance with the manufacturer’s directions for use.4,8 (V)

1. Ensure strict attention to needle placement to avoid accidental injection into surrounding tissue.

2. Observe patients for at least 30 minutes after a pump refill.

3. Ensure availability of naloxone to treat inadvertent overdoses.

K. Apply a sterile dressing, and stabilize the intraspinal access site:

1. Routine dressing changes for short-term epidural and intrathecal access devices are not recommended due to risk for dislodgment.4 (V)

2. Perform site care and dressing changes over a tunneled and accessed epidural catheter in accordance with organizational policy; there are no evidence-based recommendations for routine site care and dressing changes. (V, Committee Consensus)

3. If site care is performed, allow any skin antiseptic agent to fully dry as all antiseptic agents have the potential to be neurotoxic.4,6 (V)

4. Use a transparent semipermeable membrane (TSM) dressing to allow for site visualization.6 (V)

5. After the first 24 hours postplacement of a ventricular reservoir, leave the site open to air.4 (V)

6. Consider the use of chlorhexidine-impregnated dressings for patients with an epidural access device. A significant reduction in epidural skin colonization and catheter tip colonization has been demonstrated with their use.12,13 (III)

7. Reduce the risk of accidental dislodgment by taping a tension loop of tubing to the patient’s body.6 (V)

8. Subcutaneous tunneling and sutures resulted in fewer incidents of premature dislodgment of thoracic epidural catheters when compared to taping.14 (III)

L. Identify catheter tip dislodgment by routinely assessing for changes in external catheter length; clinical evidence of catheter tip dislodgment may include decrease in pain control (eg, intrathecal placement dislodges to epidural space) or an increase in side effects (eg, epidural placement dislodges to intrathecal space).4,7 (V)

M. Assess and monitor patients after initiating or restarting an intraspinal infusion in a fully equipped and staffed environment (eg, hospital setting) for at least the first 24 hours. Be especially vigilant when monitoring higher-risk patients, such as those with sleep apnea, psychiatric conditions, or patients taking concomitant medications.2,8 (V)

N. Maintain peripheral intravenous access for at least 24 hours due to the potential need for naloxone administration for evidence of respiratory depression.6 (V)

O. Assess the patient’s response to therapy at established intervals. Recommendations include assessing at the following time intervals: hourly for the first 24 hours and then every 4 hours; assessment of outpatients and patients receiving home care should occur with every patient encounter.5,7,8 (V)

1. Pain rating using a validated, appropriate pain scale based on the patient’s age and condition (eg, 0-10), both at rest and with activity.

2. Blood pressure, pulse, respiratory rate, temperature.

3. Level of sedation if opioid is being administered.

4. Number of bolus doses, if used (eg, patient-controlled epidural analgesia).

5. Fetal status and response to intraspinal infusion for the patient in labor.

7. Signs of catheter insertion site infection or epidural abscess, such as back pain, tenderness, erythema, swelling, drainage, fever, malaise, neck stiffness, progressive numbness, or motor block.
8. Dressing for intactness and absence of moisture/leakage.
9. Catheter and administration set connections.
10. Changes in sensory or motor function that may indicate an epidural hematoma, including unexplained back pain, leg pain, bowel or bladder dysfunction, and motor block.
11. Oxygen saturation levels via pulse oximeter and carbon dioxide levels as prescribed.
12. Electronic infusion device for history of analgesic use and correct administration parameters.

P. Address the following patient education topics1,4,8:

1. The importance of reporting alcohol use and all medications used including prescription, over-the-counter, and complementary medications.
2. Signs and symptoms to report, including changes in pain perception, new or worsening side effects, and fever.
3. Clinical signs of overdose including dizziness, sedation, euphoria, anxiety, seizures, and respiratory depression.
4. Patients with implanted infusion pump systems: caution with active repetitive bending or twisting of spine as these may increase the risk for catheter damage or dislodgement; increased pain and withdrawal symptoms may be indicative of problems.

REFERENCES

Note: All electronic references in this section were accessed September 8, 2015.

55. INTRAOSEOUS (IO) ACCESS DEVICES

Standard

55.1 The clinician evaluates the patient and anticipates appropriate use of the intraoseous (IO) route in the event of difficult vascular access for emergent, urgent, and medically necessary situations.

Practice Criteria

A. In the event of adult or pediatric cardiac arrest, anticipate use of the IO route if intravenous access is not available or cannot be obtained quickly. Pediatric advanced life support guidelines suggest the use of the IO route as the initial vascular access route.1,7 (II)

B. The IO route may also be considered for emergent and nonemergent use in patients with limited or no vascular access; when the patient may be at risk of increased morbidity or mortality if access is not obtained, such as during shock, life-threatening or status epilepticus, extensive burns, major traumatic injuries, or severe dehydration; and/or when delay of care is compromised without rapid vascular access. Use of IO infusion is also reported in anesthesia.8-18 (IV)

C. Increase and improve appropriate IO use through education and competency programs as underuse of the IO route in emergency departments is reported.19 (II)

1. Include the following in competency programs: initial and ongoing validation of safe insertion knowledge and skills through demonstration;
H. Adhere to aseptic technique during IO access.

D. Use an appropriate IO device; 3 categories of devices are available, including manual needles, impact driven, and drill powered. Performance (success rates, time of placement, ease of use, user preference) of different IO devices was evaluated with few comparative studies and weak evidence supporting superiority of the battery-powered IO drill over manual needles and other semiautomatic devices. 11,12,22-28 (IV)

E. Select an appropriate IO site based on the clinical situation and device specifics. Refer to manufacturers’ directions for use for each IO device has approval for particular sites.

1. Insertion sites most commonly reported in the literature for use in both adults and children include the proximal and distal tibia and the proximal humerus, the distal femur for children, and the sternum in adults.

2. Other sites less commonly reported in the literature and that may be off-label for IO access include the radius, ulna, pelvis, and clavicle. 10,11,15,18,23,24,27 (IV)

F. Avoid IO access in the following sites/situations:

1. Absolute contraindications (related to anatomic issues): compartment syndrome in target extremity; previously used IO site or recent failed IO attempt; fractures at or above the site; previous orthopedic surgery/hardware; presence of infection or severe burns near the insertion site; and local vascular compromise.

2. Presence of bone diseases such as osteogenesis imperfecta, osteopetrosis, and osteoporosis. 11,12,15,18,23,27,28 (IV)

G. Consider the use of lidocaine as a local anesthetic during insertion (subcutaneously at the intended site). For infusion-related pain, consider IO administration of 2% preservative-free and epinephrine-free lidocaine given slowly prior to infusion initiation. 12,13,15,18,23,26,27 (V)

H. Adhere to aseptic technique during IO access. Perform skin antisepsis using an appropriate solution (eg, >0.5% chlorhexidine in alcohol solution, povidone-iodine, 70% alcohol) based on organizational policies and procedures. There is no evidence addressing the optimal antisepctic solution. 12,18,19,23,26,27,29 (V)

I. Confirm proper placement of the IO device by assessment of the needle position, sensation of loss of resistance upon bone penetration, absence of any signs of infiltration upon flushing with 5- to 10-mL (adults) or 2- to 5-mL (pediatric) preservative-free 0.9% sodium chloride (USP). The ability to aspirate blood or bone marrow also assists in confirmation but may be difficult in certain patients (eg, severe dehydration) and therefore is not an indication of improper placement if other indications of placement confirmation are present. 10,24,27 (V)

J. Apply a sterile dressing over the IO access site, and stabilize device. 18,29 (V)

K. Limit dwell time of the IO device to no longer than 24 hours. Assess for an appropriate replacement vascular access device (VAD) (see Standard 26, Vascular Access Device [VAD] Planning). 11,18,20 (V)

L. Monitor for complications associated with IO access. While relatively uncommon, the most common reported complication is infiltration/extravasation from dislodgement and compartment syndrome. Infants and young children may be at greater risk for extravasation and subsequent compartment syndrome due to small bone size and too long needle length. 10-12,14,15,18,24,26,27,30-32 (IV)

1. Reduce risk for infiltration/extravasation through avoiding multiple attempts at IO access at the same site; ensuring proper needle placement; securing IO device; rechecking IO placement, especially before infusing highly irritating solutions/knowen vesicants and large volume infusions; ongoing and frequent assessment of the IO site and extremity; and limiting infusion time to less than 24 hours. 27,30-32 (IV)

2. Rarely reported complications include iatrogenic fracture, infection, fat emboli, and osteomyelitis. Infectious complications were more likely to occur with prolonged infusion or if bacteremia was present during the time of insertion. 10-12,14,15,18,24,26,27,30-32 (IV)

REFERENCES

Note: All electronic references in this section were accessed September 8, 2015.

56. CONTINUOUS SUBCUTANEOUS INFUSION AND ACCESS DEVICES

Standard

56.1 The clinician assesses the patient for appropriateness of the subcutaneous route in relation to the prescribed medication or solution, the patient’s clinical condition, and the presence of adequate subcutaneous tissue.

Practice Criteria

A. Consider administration of isotonic solutions (5% dextrose in water or 0.9% sodium chloride) via a subcutaneous access device (hypodermoclysis) for treatment of mild to moderate dehydration.1-8 (V)

B. Consider the subcutaneous route for continuous opioid (eg, morphine, hydromorphone, fentanyl) and other infusion therapies/medications (eg, immunoglobulin therapy, terbutaline). In addition, administer other medication on an intermittent basis via a subcutaneous access device.2,5,9-11 (V)

C. Use hyaluronidase to facilitate the dispersion and absorption of 1,000 mL or more of subcutaneously administered hydration solutions in adults and pediatric patients. The dosage of subcutaneous solutions administered is dependent upon the patient’s age, weight, clinical condition, and laboratory values. The rate and volume of subcutaneous fluid administration should not exceed those employed for intravenous infusion.2,3,5,7,12-20 (V)
D. Consider the use of hyaluronidase to increase the dispersion and absorption of other injected drugs.19,20 (V)

1. In patients taking salicylates (eg, aspirin), steroids (eg, cortisone or estrogens), or antihistamines, a larger dose of hyaluronidase for equivalent dispersing effect may be required.19 (V)

2. Do not use hyaluronidase to enhance the dispersion and absorption of dopamine and/or alpha-agonist drugs, as the drugs are incompatible.

Consult the drug manufacturers’ references prior to administering any drug with hyaluronidase.19 (V)

3. When hyaluronidase is added to a local anesthetic agent, it hastens the onset of analgesia and tends to reduce the swelling caused by local infiltration, but the wider spread of the local anesthetic solution increases its absorption; this shortens its duration of action and tends to increase the incidence of systemic reaction.19 (V)

4. Use with caution in a nursing mother as it is not known if hyaluronidase is excreted in breast milk.19 (V)

5. Assess for adverse reactions of hyaluronidase of mild local access site reactions such as redness, pain, anaphylactic-like reactions, and allergic reactions.19 (V)

E. Select a site for subcutaneous access to include areas with intact skin that are not near a joint and have adequate subcutaneous tissue, such as the upper arm, subclavicular chest wall, abdomen (at least 2 inches away from the umbilicus), upper back, and thighs and/or as recommended by the drug manufacturer. Avoid areas that are scarred, infected, or acutely inflamed.1,2,5-7,21 (V)

F. Rotate the subcutaneous access site used for medication administration every 7 days and as clinically indicated based on the access site assessment findings.5,6 (V)

G. Rotate the subcutaneous access site used for hydration solutions every 24 to 48 hours or after 1.5 to 2 liters of solution has infused and as clinically indicated based on the access site assessment findings.2,7 (V)

H. Assess the subcutaneous access site and rotate the site when there is erythema, swelling, leaking, local bleeding, bruising, burning, abscess, or pain.1,5-7 (V)

1. For patients receiving subcutaneous immunoglobulin infusions, some swelling and site erythema, pain, and pruritis are common and tend to decrease over time. Persistent reactions may require a slower infusion rate or decreased volume per site, longer needle, or site change.10,22 (V)

I. Use a small-gauge (ie, 24- to 27-gauge) infusion device to establish subcutaneous access, and insert the subcutaneous infusion device according to the manufacturer’s guidelines. Use a subcutaneous needle labeled for high flow rates when indicated by the drug manufacturer.5,7,21 (V)

1. A stainless steel winged needle is not recommended.5 (IV)

J. Perform skin antisepsis prior to inserting the subcutaneous access device using 70% isopropyl alcohol, povidone-iodine, or >0.5% chlorhexidine in alcohol solution.6,23 (V)

K. Aspirate the subcutaneous infusion access device to confirm the absence of a blood return prior to medication and fluid administration.5,6,10 (V)

L. Apply a transparent semipermeable membrane (TSM) dressing over the subcutaneous access site to allow for continuous observation and assessment. Change the TSM dressing with each subcutaneous site rotation but immediately if the integrity of the dressing is compromised.2,5-7 (V)

M. The optimal subcutaneous infusion rate is unknown. Medication infusion rates of 3 to 5 mL per hour are reported, and hydration infusion rates of up to 1500 mL over 24 hours are reported. More than 1 subcutaneous infusion site may be used to accomplish a larger infusion volume. Follow the manufacturer’s recommended subcutaneous administration rate/infusion method for immunoglobulin infusions.2,6,7,9 (V)

N. Regulate the infusion of medications administered as a continuous infusion via a subcutaneous access device using an electronic infusion device that has the ability to titrate the rate up or down if required to improve tolerability.5,21 (V)

O. Infuse isotonic fluids for hydration via a subcutaneous access device using a manual flow regulator.4,6,7 (V)

REFERENCES

Note: All electronic references in this section were accessed September 8, 2015.

Section Nine: Infusion Therapies

Section Standards

I. Infusion therapy administration is initiated upon the orders of a licensed independent practitioner (LIP) in accordance with organizational policies and procedures.

II. References and resources that include current information about parenteral medications and solutions, including indications, dosing, acceptable infusion routes/rates, compatibility data, and adverse/side effects, are readily available to the clinician at the point of care.

III. At least 2 patient identifiers are used to ensure accurate patient identification when administering infusion medications and solutions.

IV. Aseptic technique is adhered to during all aspects of parenteral medication and solution administration.

57. PARENTERAL MEDICATION AND SOLUTION ADMINISTRATION

Standard

57.1 The clinician reviews information regarding the prescribed medication/solution including indications, dosing, acceptable infusion routes/rates, compatibility data, and adverse/side effects for appropriateness prior to administration.

57.2 Medications and infusion solutions are identified, compared against the medication order, and verified by reviewing the label for the name (brand and generic), dosage and concentration, beyond-use date, expiration date, sterility state, route, rate, and frequency of administration, and any other special instructions.

Practice Criteria

A. Review the order for appropriateness of prescribed infusion solution or medication for the patient’s age and condition, access device, dose, rate and route of administration; follow the rights of medication administration; address concerns about the appropriateness of orders with the pharmacist, prescribing licensed independent practitioner (LIP), supervisor, and/or risk management, or as defined in organizational policy. 1-4 (V)

B. Recognize physiologic characteristics and effects on drug dosage and volume limitations, pharmacologic actions, interactions, side effects/toxicities, monitoring parameters, and response to infusion therapy when administering solutions and medications to special patient populations (eg, neonatal, pediatric, pregnant, older adults) (refer to Standard 2, Special Patient Populations).

C. Administer solutions and medications prepared and dispensed from the pharmacy or as commercially prepared solutions and medications in accordance with USP <797>; if compounded outside of the pharmacy (“immediate-use” compounded sterile product), initiate administration within 1 hour after the start of the preparation (refer to Standard 17, Compounding and Preparation of Parenteral Solutions and Medications).

D. Identify and verify medications and infusion solutions and medications:

1. Review the label for accuracy against the order (name, dosage, concentration, administration route, frequency, infusion rate); integrity of solution (eg, no leakage/discoloration/precipitate/gas formation); integrity of packaging (eg, open or damaged packaging); sterility (within beyond-use or expiration date); and in the alternative care settings, verify appropriate storage/refrigeration.

2. Perform a medication reconciliation at each care transition and when a new medication(s) is ordered to reduce the risk of medication error, including omissions, duplications, dosing errors, and drug interactions.

3. Use technology according to organizational policies and procedures (eg, bar code, smart pump with dose-error reduction software), when
available, to verify medications prior to administration.

4. Discard and do not use any medication syringes that are unlabeled unless the medication is prepared at the patient's bedside and immediately administered without a break in the process.

5. Perform an independent double check by 2 clinicians according to organizational procedures for high-alert medications (refer to Standard 13, Medication Verification).

E. Limit the use of add-on devices (eg, extension sets) to only those clinically indicated due to increased risk for contamination from manipulation and to the risk for accidental disconnections and misconnections (refer to Standard 36, Add-on Devices).

F. Prepare solutions and medications for administration (eg, spiking infusion container, priming) just prior to administration.\(^5\text{,}6\) (V)

G. Administer intravenous (IV) push medications and any subsequent flush at the rate recommended by the manufacturer or in accordance with organizational procedures or guidelines, and use an appropriate volume of flush solution to ensure administration of the entire dose.

1. Administer IV push medications through the needleless connector port closest to the patient in an existing IV infusion to allow the medication to reach the circulatory system as soon as possible.\(^6\) (V)

H. Do not add medications to infusing containers of IV solutions.\(^7\) (V)

I. Assess vascular access device (VAD) function and patency prior to administration of parenteral solutions and medications (refer to Standard 40, Flushing and Locking).

J. Perform disinfection of connection surfaces (ie, needleless connectors, injection ports) before medication administration, flushing, and locking procedures (refer to Standard 34, Needleless Connectors).

K. Reduce the risk for administration set misconnections:

1. Trace all catheters/administration sets/add-on devices between the patient and the container before connecting or reconnecting any infusion/device, at each care transition to a new setting or service, and as part of the handoff process.

2. Label administration sets with the infusing solution/medication near the patient connection and near the solution container.

3. Instruct the patient, caregivers, and unlicensed assistive personnel (UAP) to obtain assistance from licensed staff whenever there is a real or perceived need to connect or disconnect devices or infusions unless the patient or caregiver is independently administering infusion medications, as in a home care setting.

4. Route tubing having different purposes in different directions (eg, IV catheters routed toward the head; feeding tubes routed toward the feet).\(^8\text{,}9\) (IV)

L. Anticipate the implementation of new connector standards from the International Organization for Standardization (ISO). New connectors that will make it nearly impossible to connect from one delivery system to another (eg, enteral to IV) are being engineered and introduced into the health care system. This requires awareness, organizational preparation, and clinician education and training.\(^10\) (V)

M. There is insufficient evidence to recommend the frequency of routine replacement of IV solution containers (without postmanufacturer additives) with the exception of parenteral nutrition solutions, which are replaced every 24 hours. Replacing other IV solution containers less often than every 24 hours is considered in times of product shortages, but such decisions are weighed against the risk of infection. One study found no relationship between length of time used and likelihood of colonization and suggests routine replacement at regular time intervals may not be necessary. Further research is recommended (see Standard 61, Parenteral Nutrition).\(^11\text{,}12\) (III)

N. Provide patient/caregiver education including, but not limited to, infusion administration and signs and symptoms to report, including those that may occur after the patient leaves the health care setting (refer to Standard 8, Patient Education).

O. Evaluate and monitor response to and effectiveness of prescribed therapy; documenting patient response, adverse events, and interventions; communicating the results of laboratory tests; and achieving effective delivery of the prescribed therapy.\(^1\text{,}13\) (V)

P. Discontinue infusion medications/solutions:

1. Upon LIP order.

2. In the event of a severe reaction (eg, anaphylactic/anaphylactoid reaction, speed shock, circulatory overload); notify rapid response team as available and LIP immediately.\(^13\) (V)

Q. Document as follows:

1. Type of therapy, drug, dose, rate, time, route, and method of administration.

2. When multiple vascular access devices (VADs) or catheter lumens are used, document which solutions and medications are being infused through each device or lumen.

3. Condition and patency of VAD site prior to and after infusion therapy.

4. Discontinuation of therapy and reason for discontinuation.

5. Patient’s response to infusion therapy including symptoms, side effects, or adverse events and laboratory tests as appropriate.

6. Patient/caregiver participation in, and understanding of, therapy, interventions, and patient...
education (refer to Standard 10, Documentation in the Medical Record).

REFERENCES

Note: All electronic references in this section were accessed September 9, 2015.

58. ANTINEOPLASTIC THERAPY

Standard

58.1 Antineoplastic agents are administered only upon written orders, including new orders or changes to existing orders. Verbal orders are acceptable only if antineoplastic agents are to be placed on hold or discontinued. 58.2 Compounding of antineoplastic agents is in accordance with state and federal regulations; the American Society of Health-System Pharmacists (ASHP); the Drug Quality and Security Act; and the United States Pharmacopoeia (USP)-National Formulary (NF), including but not limited to General Chapter <797>.

58.3 Clinical management of potential adverse events, including treatment and management of anaphylactic reactions and extravasation injuries, is addressed in organizational policies, procedures, and/or practice guidelines.

Practice Criteria

A. Ensure that personal protective equipment (PPE) and engineering controls are in place for clinicians working with antineoplastic drugs in the health care setting. Antineoplastic drugs are considered hazardous, and organizational policies and procedures to reduce risk for drug exposure should be in place (see Standard 13, Hazardous Drugs and Waste).

1. Provide access to PPE; safety data sheets (SDSs; formerly material safety data sheets); spill kits; containment bags; and designated waste disposal containers in all areas where hazardous drugs are handled.1-6 (V)

2. During compounding, employ the following: double chemotherapy gloves; protective gown; eye/respiratory protection; ventilated engineering controls such as a class II biological safety cabinet (BSC) or compounding aseptic containment isolator (CACI); closed system drug transfer device.1,6 (V, Regulatory)

3. During drug administration, employ the following: double gloves; protective gown; eye protection if liquid could splash; respiratory protection if inhalation potential; and a closed system drug transfer device.1,2 (V)

4. Drug administration sets should be attached and primed prior to the addition of the antineoplastic agent within the BSC or CACI.7 (V)

B. Ensure that only qualified clinicians administer antineoplastic therapy based on completion of a specialized education and competency program; annual assessment of competency is recommended.4,5,8 (V)

C. Ensure that informed consent was obtained prior to initiation of antineoplastic therapy, which should include a description of risks, benefits, and treatment alternatives; an opportunity to ask questions; and the right to accept or refuse treatment. A variety of approaches may be used to obtain informed consent (see Standard 9, Informed Consent).4,5 (V)

D. Assess patient’s level of understanding of treatment and provide patient/caregiver education related to

VOLUME 39 | NUMBER 1S | JANUARY/FEBRUARY 2016

Copyright © 2016 Infusion Nurses Society S127
antineoplastic therapy, including mechanism of action, potential side effects, signs and symptoms to report/whom to call, physical and psychological effects, and schedule of administration/treatment plan.4,5,7,9 (V)

E. Assess patient prior to each treatment cycle, including a review of current laboratory data and diagnostic tests, current medication list (including over-the-counter and complementary and alternative therapies), pretreatment vital signs and weight, expected side effects of therapy, and presence of new signs or symptoms of toxicity.10 (V)

F. Implement safeguards to reduce the risk of medication errors with antineoplastic drugs. Antineoplastic drugs are high-alert medications.
1. Use standardized orders, standardized dosage calculation, established dosage limits, computerized prescriber order entry (CPOE), bar-code technology, and smart pumps (see Standard 13, Medication Verification).11 (V)
2. Consult with pharmacist to review drug interactions with each change in the patient’s medication list.4 (V)
3. At the time of the order, independently verify the antineoplastic order by 2 clinicians who are qualified in antineoplastic administration to include confirmation of 2 patient identifiers, drug names, dose, volume, route, rate, calculation for dosing, treatment cycle, and day.4,10,13 (V)
4. Prior to administration, independently verify the antineoplastic order by 2 clinicians who are qualified in antineoplastic administration to include drug name, dose, volume, rate of administration, expiration date, infusion pump rate, and appearance/physical integrity of the drugs.4,10,11,13 (V)
5. Consider involving patient and family members in medication identification; patients often observe and report errors and adverse events. Strategies to involve patients in the process of medication verification should be considered a risk-reduction strategy.9 (IV)
6. Monitor cumulative chemotherapy dose, as appropriate, to ensure that the drug is discontinued if the maximum lifetime dose is reached.10,11 (V)

G. Administer vesicant medications safely via a short peripheral catheter5,10,14: (V)
1. Limit to intravenous (IV) push or infusions lasting less than 30 to 60 minutes.
2. Do not use an infusion pump for peripheral vesicant administration.
3. Do not use scalp veins in the neonate and pediatric patient.
4. Avoid the following sites: dorsal hand, wrist, antecubital fossa, near a joint, and in the limb where there is impaired circulation or lymphatic drainage and/or history of lymph node dissection.
5. Do not use an established IV site that is greater than 24 hours old. If a new IV site is initiated, use the smallest catheter possible. If the IV attempt is unsuccessful, additional attempts should be proximal to the previous attempt or on the opposite arm.
6. Instruct patient in the importance of immediately reporting any pain, burning, sensation changes, or feeling of fluid on skin during the infusion.
7. Confirm and document a positive blood return prior to vesicant administration. Do not administer in the absence of a blood return (see Standard 46, Infiltration and Extravasation).
8. Provide dilution by administering through a free-flowing infusion of a compatible solution.
9. Assess and verify blood return every 2 to 5 mL for IV push and every 5 to 10 minutes during an infusion, remaining with the patient during the entire infusion.
10. Discontinue infusion at first sign of extravasation (see Standard 46, Infiltration and Extravasation).

H. Administer vesicant medications safely via central vascular access devices (CVADs).5,10,14 (V)
1. Confirm and document a positive blood return prior to vesicant administration. Do not administer in the absence of a blood return (see Standard 46, Infiltration and Extravasation).
2. Do not administer if signs of inflammation, swelling, or signs of venous thrombosis present (refer to Standard 52, Central Vascular Access Device [CVAD]-Associated Venous Thrombosis).
3. Ensure proper placement, and adequately secure and stabilize the noncoring needle within implanted vascular access ports.
4. Provide dilution by administering through a free-flowing infusion of a compatible solution.
5. Assess and verify blood return every 2 to 5 mL for IV push and every 5 to 10 minutes during an infusion.
6. Discontinue infusion at first sign of extravasation (see Standard 46, Infiltration and Extravasation).
7. Safely dispose of hazardous waste and materials contaminated with hazardous drugs (refer to Standard 15, Hazardous Drugs and Waste).

REFERENCES

Note: All electronic references in this section were accessed September 9, 2015.

59. BIOLOGIC THERAPY

Standard

59.1. Biologic infusion therapies include, but are not limited to, colony-stimulating factors, gene therapy, monoclonal antibodies, fusion proteins, interleukin inhibitors, and immunoglobulins; are ordered in accordance with state laws and regulations, and administered in a setting in which the clinician is prepared to recognize and manage severe adverse reactions.

59.2. Patients who receive biologic therapies are screened for absence of contraindications to administration prior to the beginning of therapy and prior to each administration.

Practice Criteria

A. Implement safeguards to reduce the risk of medication adverse reactions and errors with biologic therapies; immunosuppressant therapies are high-alert medications.1 (V)

1. Standardize prescribing, storage, dispensing, and drug administration through strategies such as computerized prescriber order entry (CPOE), bar-code technology, and smart pumps using dose-error reduction systems (refer to Standard 13, Medication Verification).
2. Ensure clinician access to drug information.1 (V)
3. Collaborate with the licensed independent practitioner (LIP) and pharmacy regarding special safeguards; due to serious risks associated with some biologic agents, risk evaluation and mitigation strategies (REMS) may be required by the US Food and Drug Administration (FDA).2 (Regulatory)
4. Anticipate potential orders for premedications, such as acetaminophen and diphenhydramine, which may help to prevent infusion reactions common to many biologics. Nonsteroidal anti-inflammatory agents may help prevent fevers when interleukin-2 is administered.3-8 (V)
5. Ensure availability of drugs for treatment of adverse reactions in the treatment setting, including drugs to treat anaphylaxis; consider patient safety as a primary factor when selecting the treatment setting.3,5-9 (V)

B. Store, prepare, and administer biologic infusion products according to the manufacturers’ package inserts and in accordance with USP <797>, and dispose of biologic waste per state guidelines.5,10 (V)

1. Do not use immunoglobulin products that have been frozen.
2. Reconstitute or prepare liquid products in a clean environment consistent with USP <797> (refer to Standard 17, Compounding and Preparation of Parenteral Solutions and Medications).
3. Check expiration dates, and never use expired product.
4. Examine solution for particulates, turbidity, or clumping, and do not use if present.
5. Ensure that biologic products are at room temperature before infusing.
6. Avoid switching immunoglobulin products as this puts the patient at greater risk for adverse reactions.5 (V).

C. Ensure competency in the administration of biologic infusion therapies to include knowledge of the clinical implications, safe preparation of the agents, infection prevention, ability to establish venous access, knowledge of appropriate subcutaneous infusion sites, provision of patient/family education, and management of therapy-related adverse events.3,5,7,9 (V)

D. Assess patients2,3,8,11-16: (IV)
1. For risk factors before initiation of therapy, including, but not limited to, comorbidities; infections (viral, fungal, or bacterial); allergy profile (food, medications, drug-drug interactions); history of any previous treatment with and reaction to biologicals; TB testing; history of malignancies; weight changes; and hepatitis B and C screening.
2. For any significant changes in health status prior to each infusion, such as changes in weight, presence of any acute illness, infection, or presence of diarrhea.
3. Check vital signs prior to infusion and as indicated during infusion.
4. Review laboratory data specific to the biological therapy prior to initiation and during subsequent infusions as indicated.

E. Inform the patient and caregiver about all aspects of biologic therapy, including physical and psychological effects, side and adverse effects, and management of adverse events, such as infusion reactions, risks and benefits, and delayed reactions (see Standard 8, Patient Education).5,7 (V)

F. Select the most appropriate flow-control method for the biologic therapy, taking into account factors such as manufacturers’ recommendations for infusion rates; dosing considerations; volume; duration and use of filters; age, acuity, and mobility of the patient; health care setting; and the potential for side effects or adverse effects of the therapy (see Standard 24, Flow-Control Devices).5,7 (V)

G. Consider the option of self-administered subcutaneous immunoglobulin (SCIg) when feasible. Studies have shown higher immunoglobulin gamma (IgG) trough levels, lower cost, and enhanced compliance and quality of life.16-18 (II)

1. Ensure that the first SCIg dose is administered in a controlled setting under medical supervision.16 (V)
2. Limit infusion volume of standard SCIg to no more than a 30-mL volume per site. For hyaluronidase-facilitated SCIg, follow manufacturers’ recommendations for site volume limits (see Standard 56, Continuous Subcutaneous Infusion and Access Devices).16 (V)

3. Identify the best method for infusion delivery. Most often, a syringe pump is used; manually pushing the SCIg is also an option for some patients.16 (V)
4. Educate the patient/caregiver about drug preparation, subcutaneous administration, the importance of site rotation, what to do with missed doses, and what to monitor or report during or after the injection.16,17 (V)

H. Consider nurse-administered home administration of intravenous immunoglobulin in long-term, stable patients who require extended therapy for primary immune deficiency diseases.
1. Data suggest that treatment outcomes were enhanced by home administration as reflected by improved adherence to therapy as measured by infusion frequency and decreased cost per infusion.19 (IV)

REFERENCES
Note: All electronic references in this section were accessed September 10, 2015.

60. PATIENT-CONTROLLED ANALGESIA

Standard

60.1 The clinician is competent in the care of patients receiving patient-controlled analgesia (PCA), with knowledge of the appropriate drugs used with PCA, including pharmacokinetics and equianalgesic dosing, contraindications, side effects and their management, appropriate administration modalities, and anticipated outcomes.

60.2 The patient and caregiver are educated in the use of PCA. The patient’s and caregiver’s comprehension and ability to comply with procedures are evaluated and documented prior to and on initiation of therapy.

60.3 The use of infusion devices for PCA adheres to manufacturers’ directions for use.

Practice Criteria

A. Assess the patient for the appropriateness of PCA therapy and the patient’s comprehension of, and ability to participate in, the intended therapy.1-7 (I)

B. Assess the patient for appropriateness of using authorized agent-controlled analgesia (AACA) if the patient is unable to actively participate in PCA or parent/nurse-controlled analgesia (PNCA) for infants.8-11 (V)

C. Use standardized medication concentrations and standardized or preprinted order sets for PCA and AACA.12-16 (V)

D. Identify patient risk factors which include, but are not limited to, older age, morbid obesity, obstructive sleep apnea, chronic obstructive pulmonary disease, renal insufficiency, and continuous basal infusions for patients who have obstructive sleep apnea or are opioid naïve.17-21 (II)

E. Consider a double check by another clinician using independent verification prior to initiation of the PCA and when the syringe, solution container, drug, or rate is changed. Give special attention to drug, concentration, dose, and rate of infusion according to the order and as programmed into the electronic infusion device (EID) in order to reduce the risk of adverse outcomes and medication errors (see Standard 13, Medication Verification).14,20 (V)

F. Provide patient and caregiver education appropriate to duration of therapy and care setting and include the purpose of PCA therapy, operating instructions for the EID, expected outcomes, precautions, potential side effects, and contact information for support services.8,14,17,20-24 (II)

G. Evaluate the effectiveness of PCA/AACA/PNCA and absence of adverse events using valid and reliable monitoring and assessment methods or scales and documentation tools through:

1. Regular assessment and reassessment of patient self-report of pain or objective measure of pain, using a consistent pain-assessment scale appropriate to the patient.

2. Monitoring for potential adverse effects including, but not limited to, sedation and respiratory depression. If risk factors are present, monitoring more frequently and using capnography, pulse oximetry, and/or other clinically effective methods.

3. Regular evaluation of PCA injections and attempts.

4. Considering the need for change in treatment methods as necessary.8,11,14,17,20,23,25-33 (II)

H. Participate in selection and evaluation of PCA EIDs and quality processes to promote patient safety, which includes dose-error reduction systems (DERs), bar-coding technology, and Healthcare Failure Mode and Effect Analysis (HFMEA).14,20,21,27,29,36-44 (V)

REFERENCES

Note: All electronic references in this section were accessed September 11, 2015.

61. PARENTERAL NUTRITION

Standard

61.1 The decision to implement parenteral nutrition (PN) occurs in collaboration with the patient/caregiver and the interprofessional team based on the projected treatment plan.

61.2 PN is administered using filtration appropriate to the type of solution/emulsion.

61.3 PN is administered using an electronic infusion device (EID) with anti-free-flow control and appropriate alarms.

61.4 Compounding of PN is in accordance with state and federal regulations, the American Society of Health-System Pharmacists (ASHP), the Drug Quality and Security Act, and the United States Pharmacopoeia (USP) National Formulary (NF) including, but not limited to, General Chapter <797>.

61.5 Medications are not added to or coinfused with the PN solutions/emulsions before or during infusion without consultation with a pharmacist regarding compatibility and stability.

Practice Criteria

A. Prescribe PN safely and appropriately.

1. Use the enteral route in preference to the parenteral route for nutrition support whenever feasible.1-6 (I)

2. For patients who will transition from an acute care to the home setting, include the following factors in the discharge planning process: insurance coverage, home safety, and a physical, nutritional, and psychological needs assessment.7 (V)

3. Use standardized order forms or templates and computerized prescriber order entry (CPOE) whenever feasible, as they have been found to prevent errors related to prescriptions for PN.8,9 (IV)

4. Develop licensed independent practitioner (LIP)-approved written protocols for PN component substitution or conservation methods in the event of drug/component shortages.9 (V)

B. Prepare and compound PN properly.

1. Compound PN solutions/emulsions in the pharmacy using a primary engineering control in accordance with USP <797> standards.10 (Regulatory)

2. Attach administration tubing to the PN container and prime the tubing just prior to use.10 (Regulatory)

3. Assess for compatibility and stability before adding medications and other substances to PN solutions/emulsions in compliance with USP <797> standards. In acute care settings, no additions should be made to the PN solutions outside of the compounding pharmacy; in home settings, additions to the PN solution should be limited in number and made as close as possible to infusion initiation.4,10 (V, Regulatory)

4. Label PN solutions/emulsions in accordance with USP <797> standards. Medications and other substances added to PN solutions/emulsions are also documented on the label.10 (Regulatory)

C. PN administration.

1. Filter PN solutions without lipids using a 0.2-micron filter and lipid-containing emulsions (3-in-1) using a 1.2-micron filter to reduce the risk of microbial, precipitate, or particulate contamination. When lipids are infused separately from dextrose/amino acids, a 0.2-micron filter is used for the dextrose/amino acid solution, and the lipid emulsion must be infused below the 0.2-micron filter (eg, during “piggyback”). Separate lipid emulsions may not require filtration; consult manufacturers’ directions for use. If required, a 1.2-micron filter is used on the separate lipid emulsion.1,9 (II)

2. Do not exceed a hang time of 24 hours for PN containing dextrose and amino acids alone or with fat emulsion added as a 3-in-1 formulation.
Do not exceed a hang time of 12 hours for fat emulsions alone.4 (IV)
3. Replace administration sets for PN solutions (total nutrient admixtures [TNA] and amino acid/dextrose formulations) at least every 24 hours. There are also recommendations to change the administration set with each new PN container. Containers and administration sets should be di-(2-ethylhexyl)phthalate (DEHP)-free (refer to Standard 42, Administration Set Change).
4. Administer PN solutions/emulsions containing final concentrations exceeding 10% dextrose or other additives that result in an osmolarity of greater than 900 mOsm/L through a central vascular access device (CVAD) (see Standard 23, Central Vascular Access Device [CVAD] Tip Location; Standard 26, Vascular Access Device [VAD] Planning).11-16 (III)
5. Reserve the administration of PN solutions/emulsions with a final concentration of 10% dextrose or lower administered via a short peripheral or midline catheter for situations in which a CVAD is not currently feasible and delay of feeding would be detrimental to the patient. Consider dextrose and other additives that affect osmolarity and do not exceed an osmolarity of 900 mOsm/L for peripheral PN solutions. Clinical trials demonstrate that peripheral PN causes phlebitis. The risk/benefit decision to use peripheral PN should include as many phlebitis-mitigating techniques as possible (see Standard 26, Vascular Access Device [VAD] Planning).11-16 (IV)
6. Use EIDs with anti–free-flow protection and alarms for occlusion. Consider the use of smart pumps with dose-error reduction software as they are associated with reduced risk for infusion-related medication errors, including error interceptions (eg, wrong rate) and reduced adverse drug events (refer to Standard 13, Medication Verification; Standard 24, Flow-Control Devices).
7. Reduce the risk of catheter-related bloodstream infection (CR-BSI) when administering PN.
 a. Avoid blood sampling via the CVAD used for PN when feasible (refer to Standard 43, Phlebotomy).
 b. Consider use of a designated single-lumen catheter to administer lipid-containing PN solutions.17 (IV)
8. Avoid unplanned interruptions in the administration of PN. Tapering the rate of administration is not required for adult patients but is recommended for children < 3 years of age.4 (V)
9. Keep PN solutions refrigerated and protected from light until shortly before the time of administration to avoid oxidation of vitamins.1,4 (IV)
10. Do not attach administration sets until the time of infusion.4 (V)

D. Monitor and provide patient education.
1. Include physiological, sociological, and psychological aspects of response to therapy for patients who are on long-term PN.18-20 (II)
2. Monitoring of the patient receiving PN includes body weight; fluid and electrolyte balance; metabolic tolerance, especially glucose control; organ function; nutrition therapy-related complications; functional performance; and psychological responses. Educate the home patient/caregiver about signs and symptoms of metabolic intolerance, infection, and access device complications to report to the health care team.2,5-7,18-20 (V)
3. Monitor blood glucose on and off PN during initial cycling in the acute care or home setting.2,5-7 (V)
4. Teach patients or family members of patients who receive home PN about access device care, weight and hydration monitoring, blood/urine glucose monitoring, EID use and troubleshooting, signs and symptoms to report, and assist patients to fit PN into their lifestyle (see Standard 8, Patient Education).1,7,18-22 (V)

REFERENCES

Note: All electronic references in this section were accessed September 14, 2015.

20. Stern JM, Jacyna N, Lloyd DAJ. Review article: psychological therapy.

62.2 Blood and blood components are filtered using an in-line or add-on filter appropriate to the prescribed therapy.

Practice Criteria

A. Administer human blood and blood components (whole blood, red blood cells, plasma and plasma components, platelets, granulocytes, cryoprecipitate) only after alternative therapy has been considered. Transfuse blood and blood components in accordance with evidence-based indications to ensure patient safety, optimal patient outcomes, and eliminate unnecessary transfusions.1-6 (V)

B. Ensure that informed consent was obtained. Consent should include a description of risks, benefits, and treatment alternatives, an opportunity to ask questions, and the right to accept or refuse the transfusion.7,8 (V)

C. Perform a baseline physical assessment prior to obtaining blood for transfusion, including vital signs, lung assessment, identification of conditions that may increase the risk of transfusion-related adverse reactions (eg, current fever, heart failure, renal disease, and risk of fluid volume excess), the presence of an appropriate and patent vascular access device (VAD), and current laboratory values.3,9 (V)

D. Choose an appropriate VAD based on patient condition and transfusion needs:

1. Short peripheral catheters: use 20 to 24 gauge based on vein size and patient preference. When rapid transfusion is required, a larger-size catheter gauge is recommended (14-18 gauge).8,10 (IV)

2. Central vascular access devices (CVADs): acceptable for transfusions; recognize that with peripherally inserted central catheters, infusion may be slower based on catheter length and lumen size.8,11 (V)

3. Neonatal/pediatric patients: umbilical venous catheters or small saphenous vein catheters (24 gauge) are commonly used in infants and/or pediatric patients.8,10,12 (V)

E. Perform patient and blood product identification:

1. At the time that the blood component is released from the transfusion service to include: recipient’s 2 independent identifiers; ABO group and Rh type if required; crossmatch test interpretation if performed; special transfusion requirements; expiration date/time; and date/time of issue.7,8,13 (V)

2. During an independent double check by 2 adults in the presence of the patient (eg, hospital/outpatient setting: 2 persons trained in the identification of the recipient and blood components; in home setting: registered nurse and responsible adult):

 a. Verify the blood component: review the licensed independent practitioner’s (LIP’s) order for transfusion; type of blood component (red blood cell, plasma, platelet); patient blood type compatibility with the unit to be transfused; crossmatch test interpretation if performed; donor identification number; unit...
expiration date/time; and any product modification such as irradiation or cytomegalovirus (CMV) seronegative component.\(^7,8,13\) (V)

b. A 1-person verification process may be used with automated identification technology (eg, bar code with appropriate logic/interface application). The use of computerized bar code-based blood identification systems resulted in a large increase in discovered near-miss events. Emerging technology includes radiofrequency identification devices.\(^8,14,16\) (IV)

F. Inspect each blood component prior to transfusion, and do not use if container is not intact or if the appearance is not normal (eg, excessive hemolysis, significant color change in blood bag compared to administration set, presence of floccular material, cloudy appearance) and return it to the transfusion service.\(^5,13\) (V)

G. Administer blood or blood components with 0.9% sodium chloride. No other solutions or medications should be added to or infused through the same administration set with blood or blood components unless they have been approved by the US Food and Drug Administration (FDA) for this use.\(^7,8,13\) (I A/P)

H. Filter all blood components and follow the manufacturers’ directions for filter use.
 1. Use a filter designed to remove blood clots and harmful particles; standard blood administration sets include a 170- to 260-micron filter.\(^7,8,13\) (V)

 2. Do not use microaggregate filters routinely; these are most often used for reinfusion of blood shed and collected during surgery.\(^8\) (V)

 3. Leukocyte reduction filtration is generally preferred “prestorage” or shortly after blood collection. Bedside leukocyte reduction is a less efficient method and has been associated with dramatic hypotension in some patients. Use of leukocyte-reduced blood products (red cells and platelets) decreases the risk of febrile transfusion reactions, risk of human leukocyte antigen (HLA) alloimmunization, and transmission of CMV.\(^8\) (V)

 4. Never use leukocyte filtration when transfusing granulocyte or hematopoietic progenitor cells.\(^7,8,13\) (V)

I. Change the transfusion administration set and filter after the completion of each unit or every 4 hours. If more than 1 unit can be infused in 4 hours, the transfusion set can be used for a 4-hour period (see Standard 42, Administration Set Change).\(^8\) (V)

J. Administer and complete each unit of blood or blood component within 4 hours. Consider asking the transfusion service to divide a unit of red blood cells or whole blood into smaller aliquots when slower infusion of a unit is required, such as with pediatric patients or adult patients at risk for fluid overload. Platelets should be administered over 30 minutes to 4 hours. Each unit of plasma should be administered as quickly as tolerated by the patient or over 15 to 60 minutes.\(^8,13\) (V)

K. Electronic infusion devices (EIDs) can be used to deliver blood or blood components without significant risk of hemolysis of red blood cells. EIDs that have a labeled indication for blood transfusion should be used. Follow the manufacturers’ directions for use (see Standard 24, Flow-Control Devices).\(^8,17\) (IV)

L. Use only a blood-warming device, with a labeled indication, when clinically necessary, such as with large-volume or rapid transfusions, exchange transfusions, patients with clinically significant conditions, and the neonate/pediatric population. The risk for clinically important hypothermia is increased when blood is transfused through a CVAD (see Standard 25, Blood and Fluid Warming).\(^7,8\) (V)

M. Consider the use of an externally applied compression device or electronic rapid infusion device, according to manufacturers’ directions for use, when rapid transfusion is required. Externally applied compression devices should be equipped with a pressure gauge, totally encase the blood bag, and apply uniform pressure against all parts of the blood container. Pressure should not exceed 300 mm Hg. For rapid infusion, a larger-gauge catheter may be more effective than a pressure device.\(^8\) (V)

N. Monitor for adverse transfusion events.

 1. Check the patient’s vital signs prior to transfusion, within 5 to 15 minutes after initiating transfusion, after the transfusion, and as needed depending on patient condition.\(^8\) (V)

 2. Initiate the transfusion slowly at approximately 2 mL per minute for the first 15 minutes, and remain near the patient; increase the transfusion rate if there are no signs of a reaction and to ensure the completion of the unit within 4 hours.\(^8\) (V)

 3. Stop the transfusion immediately if signs and symptoms of a transfusion reaction are present; notify the LIP and transfusion service, and administer emergency medications as prescribed.\(^7,8,13,18\) (V)

 4. Monitor patients for transfusion reactions for at least 4 to 6 hours to detect febrile or pulmonary reactions associated with the transfusion; for patients not under direct observation after the transfusion, provide patient education about signs and symptoms of a delayed transfusion reaction and importance of reporting.\(^7,8,12,18\) (V)

O. Ensure safe transfusion practice if transfusing in an out-of-hospital setting including the following: documentation showing no identified adverse events...
during previous transfusions; immediate access to the LIP by phone during the transfusion; another competent adult present and available to assist with patient identification and calling for medical assistance if needed; ability to transport blood product in cooling containers verified for correct temperature; ability to appropriately dispose of medical waste; and a well-designed patient and caregiver education process, including clearly written instructions regarding transfusion reactions.8 (V)

P. Consider participation in the National Healthcare Safety Network’s (NHSN’s) voluntary program to monitor recipient adverse reactions and quality control incidents related to blood transfusions. Participation provides organizations with data that can be used for interorganizational comparison and quality improvement activities.14 (V)

REFERENCES

Note: All electronic references in this section were accessed September 14, 2015.

63. MODERATE SEDATION/ANALGESIA USING INTRAVENOUS INFUSION

Standard

63.1 The registered nurse may administer moderate sedation/analgesia using intravenous (IV) infusion in accordance with rules and regulations promulgated by the state’s Board of Nursing and in accordance with organizational policies and procedures.

63.2 The registered nurse is competent in the administration of moderate sedation/analgesia, including knowledge of preprocedure assessment, different sedation levels; safe medication administration; and reversal agents for moderate sedation/analgesia, as well as airway management; monitoring of physiological parameters; common complications and interventions; and resuscitation through age-appropriate cardiac life support validation.

63.3 An emergency cart and reversal agents are immediately accessible, and clinicians with expertise in airway management, emergency intubation, advanced cardiopulmonary life support, and management of potential complications are immediately available.

Practice Criteria

A. Ensure competency and advanced knowledge and skills when administering IV sedation/analgesia.1-7 (IV)

B. Identify a list of medications that may be administered by the registered nurse: medications for moderate sedation that may be administered include benzodiazepines (midazolam, diazepam); narcotics (fentanyl, meperidine); propofol; neuroleptic
tranquilizers (droperidol); and antihistamines (diphenhydramine).

C. Ensure patient informed consent was obtained according to organizational policy and procedure (see Standard 9, Informed Consent).

D. Establish the discharge plan prior to the procedure, including the need to have a family member/caregiver/friend drive the patient home and observe the patient post procedure.

E. Perform a comprehensive preprocedural assessment to include medical history/current condition, current medications, allergies, previous sedation experience, drug/alcohol/tobacco use, and verification of NPO (nothing by mouth) status.

1. Consult with an anesthesia licensed independent practitioner (LIP) based on any problematic issues identified during the assessment, such as significant opioid use, history of intolerance to moderate sedation, airway issues, allergies, and significant comorbidities.

F. Initiate and maintain vascular access throughout the procedure and recovery for administration of medications and for potential need for emergency resuscitative medications, oxygen, and/or reversal agents; moderate sedation may convert to deep sedation and loss of consciousness due to the types of agents used, the patient’s physical status, and drug sensitivities.

G. Monitor the patient continuously throughout the procedure, including blood pressure, respiratory rate, oxygen saturation, cardiac rate and rhythm, and level of consciousness. The clinician who is monitoring the patient receiving moderate sedation should have no other responsibilities during the procedure.

H. Use of capnography is recommended to measure adequacy of ventilation.

1. Use valid and reliable tools or established organizational criteria to assess adequacy of sedation and analgesia and readiness for discharge home or transfer to a hospital unit.

I. Observe the patient for at least 90 minutes after the procedure if reversal agent administration is required.

J. Provide patient and caregiver education prior to, and reinforcement after the procedure, about the sedation/analgesia infusion; procedure; restrictions; potential complications related to the infusion site and the procedure; emergency instructions; and 24-hour contact phone number.

REFERENCES

Note: All of the electronic references in this section were accessed September 14, 2015.

64. THERAPEUTIC PHLEBOTOMY

Standard

64.1 All hazardous waste, including that from therapeutic phlebotomy, will be disposed of according to organizational policies and procedures.

Practice Criteria

A. Include the following in orders for therapeutic phlebotomy: laboratory values to be assessed specific to the patient’s diagnosis, parameters for laboratory values guiding the indication for phlebotomy, frequency of phlebotomy, and specific volume of blood to be withdrawn.
Prevent, manage, and recognize common side effects, such as hypovolemia, nausea/vomiting, or rare adverse events, by using a reclining chair or exam table/bed for the procedure; monitoring vital signs before and after the procedure; encouraging oral hydration before and after the procedure; asking about fear of needles or blood; and administering parenteral solution replacement if prescribed, indicating the type of solution, amount, and rate of infusion. 1,2,4-13 (IV)

Select the most appropriate vascular access device (VAD) based on patient condition, anticipated length of treatments needed, and other infusion therapies:

1. Short peripheral catheter using an 18- to 20-gauge device and inserted before phlebotomy and removed upon completion.

2. Central vascular access device (CVAD) if already placed, and therapeutic phlebotomy will not compromise other infusion therapies.

3. Apheresis catheter. 1,11 (V)

Blood collection receptacles may include collection bags used for volunteer blood donation or bags specifically designed for therapeutic phlebotomy; syringes may also be used based on the VAD. Do not use vacuum containers to facilitate blood flow due to risk of air embolism. 1 (V)

After completion of the phlebotomy, manual pressure should be maintained at the venipuncture site after removal of the peripheral catheter until bleeding has stopped, then a dressing applied. The patient should remain in a reclining position for several minutes, then instructed to rise slowly. 1,4 (V)

Provide patient education, including potential side effects such as a hematoma, syncope, and nausea/vomiting. Instructions should include the type and amount of physical activity before and after the procedure. 1,4 (V)

Documentation should include total volume of blood withdrawn, patient response to the procedure, vital signs, dressing applied or catheter locking, and patient instructions. 1 (V)

REFERENCES

Appendix A.

Infusion Team Definition

This team is defined as a group of nursing personnel centrally structured within an acute health care facility charged with the shared mission of outcome accountability for the delivery of infusion therapy. While this team may not be directly providing each infusion, they provide the advanced knowledge for safe practices to support the primary care staff. Thus, the roles of the infusion team members include direct care providers, educators, consultants, coaches, mentors, advocates, coordinators, and managers.

This team is led by infusion nurse specialists (eg, CRNI®s) and may contain a staff mix of registered nurses, licensed practical nurses, and unlicensed assistive personnel. Unlicensed team members work under the direction of the licensed professional infusion nursing staff.

The scope of services for the infusion team consists of a variety of activities related to the safe insertion, delivery, and maintenance of all infusion and vascular access therapies including fluids and medications, blood and blood components, and parenteral nutrition. The identified services of this team should be based on the fact that infusion therapy is needed in all areas of the organization and by all ages of patients/clients. This team will provide guidance for establishing policy and practices according to the nationally recognized Infusion Therapy Standards of Practice.

Goals for this team include accuracy, efficiency, and consistency for safe delivery of all infusion services, along with reduction and/or elimination of complications. Meeting this goal will reduce liability, lower costs, and decrease length of stay, while promoting vascular preservation, greater patient satisfaction, and better outcomes.

Responsibility for performing direct clinical practice should be divided between the infusion team and the primary nursing staff based on documented clinical outcomes, patient populations and their specific needs and risks, and the complexity of the knowledge and skill(s) required to perform each nursing intervention.

The Centers for Disease Control and Prevention (CDC) and published research recognize that the use of teams in the health care setting reduces mistakes and enhances patient safety, thereby indicating that the use of an infusion team is strongly recommended for all health care organizations.

Appendix B. Illustrations

Figure 2 Superficial venous drainage of upper limb. A. Forearm, arm, and pectoral region. B. Dorsal surface of hand. C. Palmar surface of hand. The arrows indicate where perforating veins penetrate the deep fascia. Blood is continuously shunted from these superficial veins in the subcutaneous tissue to deep veins via the perforating veins. From Agur AMR, Dalley AF. Grant’s Atlas of Anatomy. 13th ed. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins; 2013:498. Used with permission.
Figure 3 Veins of axilla. The basilic vein joins the brachial veins to become the axillary vein near the inferior border of teres major, the axillary vein becomes the subclavian vein at the lateral border of the first rib, and the subclavian joins the internal jugular to become the brachiocephalic vein posterior to the sternal end of clavicle. Numerous valves, enlargements in the vein, are shown. The cephalic vein in this specimen bifurcates to end in the axillary and external jugular veins. From Agur AMR, Dalley AF. Grant’s Atlas of Anatomy. 13th ed. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins; 2013:509. Used with permission.
Figure 5 Superficial veins of the neck—lateral view. The superficial temporal and maxillary veins merge to form the retromandibular vein. The posterior division of the retromandibular vein unites with the posterior auricular vein to form the external jugular vein (EJV). The facial vein receives the anterior division of the retromandibular vein, forming the common facial vein that empties into the internal jugular vein. From Agur AMR, Dalley AF. Grant’s Atlas of Anatomy. 13th ed. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins; 2013:754. Used with permission.
Glossary

A

Add-on Device. Additional component, such as an inline filter, stopcock, Y-site, extension set, manifold set, and/or needleless connector, that is added to the administration set or vascular access device.

Administration Set. A tubing set composed of plastic components that is used to deliver infusions and that typically includes a spike, a drip chamber, injection ports, and a male luer-lock end. Variations may include a Y-set, integrated filter, and microbore tubing.

Admixture. To mix; to combine 2 or more medications.

Advanced Practice Registered Nurse (APRN). A nurse practitioner, clinical nurse specialist, nurse anesthetist, or nurse midwife.

Adverse Event. Any unintended or untoward event that occurs with a patient receiving medical treatment that is related to a medication, product, equipment, procedure, etc.

Air Embolism. The presence of air in the vascular system that obstructs venous blood flow primarily to the lungs or brain.

Airborne Precautions. A type of isolation precaution to reduce the risk of infection from airborne transmission of airborne droplet nuclei that may remain suspended in the air.

Allen Test. A test performed on the radial and ulnar artery of the hand prior to arterial puncture to ascertain adequate arterial perfusion.

Alternative Site. A health care setting outside of the acute care hospital that includes, but is not limited to, the home, long-term care and assisted living facility, outpatient center/clinic, and physician office.

Ambulatory Infusion Device. Infusion device specifically designed to be worn on the body to promote patient mobility and independence.

Ampoule. Hermetically sealed glass medication container that must be broken at the neck to access the medication.

Anti-Free-Flow Protection. Administration set technology that prevents intravenous solutions from flowing into the patient when the administration set is removed from the flow-control device.

Anti-infective CVAD. Central vascular access device coated or impregnated with antiseptic or antimicrobial agents.

Antimicrobial Locking Solutions. Solutions using supratherapeutic concentrations of antibiotic, or a variety of antiseptic agents, to lock the central vascular access device (CVAD) lumen for a prescribed period of time for prevention or treatment of catheter-related bloodstream infection (CR-BSI).

Antineoplastic Agent. Medication that prevents the development, growth, or proliferation of malignant cells.

Antiseptic. A substance used to reduce the risk of infection by killing or inhibiting the growth of microorganisms.

Apheresis. Process of separating blood into 4 components: plasma, platelets, red blood cells, and white blood cells, removing 1 of the components and then reinfusing the remaining components.

Arterial Pressure Monitoring. Monitoring of arterial pressure through an indwelling arterial catheter connected to an electronic monitor.

Arteriovenous (AV) Fistula. Surgical anastomosis between an artery and vein.

Arteriovenous (AV) Graft. Surgical structure created between an artery and a vein, usually of a manufactured synthetic material.

Aseptic No-Touch Technique. A theoretical framework for safe and effective aseptic practice that can be applied to all clinical procedures.

Aseptic Technique. A primary infection prevention method to maintain objects and areas maximally free from microorganisms (eg, through use of sterile supplies, barriers, and absolute separation of sterile items from those that are not sterile).

Assent. Agreement by an individual not competent to give legally valid informed consent (eg, a child or cognitively impaired person).

Authorized Agent-Controlled Analgesia. A competent person authorized and educated by the prescriber to activate the analgesic dose when a patient is not able to do so.
Catheter Clearance. The process to reestablish catheter lumen patency using medications or chemicals instilled into the lumen for a specific period of time.
Cleaning. The removal of visible soil (e.g., organic and inorganic material) from objects and surfaces. Thorough cleaning is essential before performing disinfection and sterilization procedures because inorganic and organic materials that remain on the surfaces interfere with the effectiveness of these processes.

Closed System Drug Transfer Device. A drug transfer device that mechanically prohibits the transfer of environmental contaminants into the system and the escape of hazardous drugs or vapor concentrations outside the system; used in compounding and administering sterile doses of chemotherapy and other hazardous drugs.

Closed System Transfer. The movement of sterile products from one container to another in which the containers, closure system, and transfer devices remain intact through the entire transfer process, compromised only by the penetration of a sterile, pyrogen-free needle or cannula through a designated closure or port to effect transfer, withdrawal, or delivery.

Color Coding. System that identifies products and medications by the use of a color system.

Compatibility. Capable of being mixed and administered without undergoing undesirable chemical and/or physical changes or loss of therapeutic action.

Competence. Capability of the individual to apply knowledge, critical thinking, interpersonal, decision-making, and psychomotor skills to the performance of infusion therapy.

Competency. An integration of behaviors in the varied circumstances of the work environment demonstrating the individual’s ability to perform the desired job-related activities and tasks.

Competency Assessment. The process of reviewing and documenting the individual’s demonstrated ability to perform a job, role, specific tasks, or other patient care activities.

Compounding. The act of preparing, mixing, assembling, packaging, and labeling a drug, drug delivery device, or device according to a practitioner’s prescription for an individual patient or based on a professional agreement between the practitioner, patient, and pharmacist.

Compounding Aseptic Containment Isolator (CACI). Used during drug compounding to provide health care worker protection from exposure to undesirable levels of airborne drugs and to provide an aseptic environment when compounding sterile preparations.

Computerized Prescriber Order Entry (CPOE). A system in which clinicians directly enter medication, test, or procedure orders into a computer system; medication orders are transmitted directly to the pharmacy.

Conscious Sedation. Minimally depressed level of consciousness in which the patient retains the ability to maintain a patent airway independently and continuously and to respond appropriately to physical stimulation and verbal commands. The drugs, doses, and techniques used are not intended to produce loss of consciousness.

Contact Precautions. Strategies implemented to prevent the transmission of infectious agents such as wound drainage, which are spread by direct or indirect contact between the patient and environment.

Contamination. Introduction or transferral of pathogens or infectious material from one source to another.

Cross Contamination. The indirect movement of pathogens or other harmful substances from one patient to another patient.

Cultural Competency. The delivery of infusion services that are respectful of and responsive to the beliefs, culture, practices, and linguistic needs of patients and their families served by the health care organization.

D

Dead Space. As applied to needleless connectors, this is the internal space outside the intended fluid pathway into which fluid can move.

Decontamination. The removal of pathogenic microorganisms from objects so they are safe to handle, use, or discard.

Deep Sedation. Drug-induced depression of consciousness; the patient responds persistently to repeated or painful stimulation; the capacity to preserve respiratory function may be diminished and support to maintain the airway and spontaneous respiration may be required. Cardiovascular function is generally preserved.

Delegation. The process by which a registered nurse (RN) directs another person to perform tasks or activities not commonly performed by that person; the RN retains accountability for the outcome of the delegated tasks or activity.

Difficult Vascular Access. Multiple unsuccessful venipuncture attempts (i.e., maximum of 4) to cannulate a vein; the need for special interventions to establish venous cannulation based on a known history of difficulty due to diseases, injury, and/or frequent unsuccessful venipuncture attempts.

Dilution. To add a diluent (e.g., 0.9% sodium chloride, sterile water) to a solution of medication in order to make it less concentrated or to provide additional solution for ease of administration and titration, or to decrease the tissue irritation of a medication.

Disclosure. The process of revealing to the patient and family all the facts necessary to ensure understanding of what occurred when a patient experiences a significant complication from a medical error or mistake; information that is necessary for the patient’s well-being or relevant to future treatment.
Disinfectant. Agent that eliminates all microorganisms except bacterial spores.

Disinfection. A process that eliminates many or all pathogenic microorganisms, except bacterial spores, on inanimate objects.

Disinfection Cap. Plastic cap containing an antiseptic solution placed on top of the connection surface of a needleless connector to disinfect the surface and provide protection between intermittent uses.

Distal. Farthest from the center, or midline, of the body or trunk, or from the point of attachment; opposite of proximal.

Doppler Flow Study. A form of ultrasound technology that produces audible sounds to determine characteristics of circulating blood.

Dose-Error Reduction System. Electronic infusion devices (EIDs) manufactured with drug libraries containing drug name and soft and hard infusion limits; EIDs designed to prevent errors in solution and medication delivery, often called “smart pumps.”

Droplet Precautions. A type of isolation precaution to reduce the risk of infection from pathogens spread through close respiratory or mucous membrane contact with respiratory secretions.

Electronic Infusion Device (EID). Device that is powered by electricity or battery to regulate infusion rate; may be either a positive-pressure pump or controller (gravity fed) used to regulate the flow rate of the infusion therapy.

Embolus. Mass of undissolved matter present in blood or lymphatic vessel; an embolus may be solid, liquid, or gaseous.

Engineered Stabilization Device. A device or system placed subcutaneously or topically; specifically designed and engineered to control movement at the catheter hub.

Engineering Controls. Devices that isolate or remove the blood-borne pathogens hazard from the workplace, such as sharps disposal containers, self-sheathing needles, needleless systems, and sharps with engineered protections.

Epidural Space. Space surrounding the spinal cord and its meninges; contains fatty tissue, veins, spinal arteries, and nerves; considered a potential space that is not created until medication or air is injected.

Erythema. Redness of skin along a vein track that results from vascular irritation or capillary congestion in response to irritation; may be a precursor to or indication of phlebitis.

Evidence-Based Practice. Application of the best available synthesis of research results in conjunction with clinical expertise and with attention to and inclusion of patient preferences.

Expiration Date. The date and time, when applicable, beyond which a product should not be used; the product should be discarded beyond this date and time; assigned on the basis of both stability and risk level, whichever is the shorter period.

Extravasation. Inadvertent infiltration of vesicant solution or medication into surrounding tissue; rated by a standard tool.

Extrinsic Contamination. Contamination that occurs after the manufacturing process of a product.

F

Fat Emulsion (Intravenous Fat Emulsion [IVFE]). Combination of liquid, lipid, and an emulsifying system formulated for intravenous use.

Filter. A special porous device used to prevent the passage of air or other undesired substances; product design determines size of substances retained.

Flow-Control Device. Instrument used to regulate infusion flow rate; includes categories of manual devices (eg, slide, roller clamp, screw), mechanical infusion devices (see definition), and electronic infusion devices (see definition).

Flushing. The act of moving fluids, medications, blood, and blood products out of the vascular access device into the bloodstream; used to assess and maintain patency and prevent precipitation due to solution/medication incompatibility.

G

Gap Analysis. Assessment of the difference(s) between actual and required knowledge, skill, or performance; may be done on an individual, department, or organizational level.

Guidewire. A long, flexible metal structure, composed of tightly wound coiled wire in a variety of designs; contains safety mechanisms that allow it to be inserted into the vein or artery.

H

Hazardous Drugs. Drugs exhibiting 1 or more of the following 6 characteristics in humans or animals: carcinogenicity, teratogenicity or other developmental toxicity, reproductive toxicity, organ toxicity at low doses, genotoxicity, and structure and toxicity profiles of new drugs that mimic existing drugs determined hazardous by the above criteria.

Hazardous Waste. In the context of this document, hazardous waste is differentiated from medical waste and refers to that generated from administration of hazardous drugs (eg, containers and intravenous supplies used to administer hazardous drugs).

Healthcare Failure Mode and Effect Analysis (HFMEA). A systematic, proactive method used to evaluate a process or device for the purposes of
identifying where and how a process might fail; results are used to identify and prioritize the most needed process changes.

Health Literacy. The degree to which individuals have the capacity to obtain, process, and understand basic health care information and services needed to make appropriate decisions.

Hemodynamic Pressure Monitoring. A general term for determining the functional status of the cardiovascular system as it responds to acute stress such as myocardial infarction and cardiogenic or septic shock. A pulmonary artery catheter is used to directly measure intracardiac pressure changes, cardiac output, blood pressure, and heart rate.

Hemolysis. Destruction of the membrane of the red blood cells resulting in the liberation of hemoglobin, which diffuses into the surrounding fluid.

Hemostasis. An arrest of bleeding or of circulation.

Heparin-Induced Thrombocytopenia (HIT). An acute, transient prothrombotic disorder caused by heparin-dependent, platelet-activating antibodies; a hypercoagulable state with a strong association to venous and arterial thrombosis.

High-Alert Medication. Medications that possess a heightened risk of causing significant patient harm when used in error.

Hospital Disinfectant. A disinfectant registered by the Environmental Protection Agency (EPA) for use in hospitals, clinics, dental offices, and any other medical-related facility.

Hypertonic. Solution of higher osmotic concentration than that of a reference solution or of an isotonic solution; having a concentration greater than the normal tonicity of plasma.

Hypodermoclysis. The treatment of dehydration by infusing fluids into the subcutaneous tissues at rates greater than 3 mL/hour; solutions are isotonic or near-isotonic.

Hypotonic. Solution of lower osmotic concentration than that of a reference solution or of an isotonic solution; having a concentration less than the normal tonicity of plasma.

Immediate-Use Compounded Sterile Preparations (CSPs). Used in emergent situations or in situations where adhering to low-risk compounding procedures would add additional risk due to delays in patient care (e.g., medications with short stability that must be prepared immediately before administration outside health care facilities, such as in home infusion). Immediate-use CSPs do not need to be compounded in an ISO Class 5 environment, and garbing and gowning are not required, as long as all of the following criteria are met:

1. Hand hygiene per Centers for Disease Control and Prevention (CDC) recommendations.
2. Aseptic technique is followed.
3. No hazardous drugs are used.
4. Only simple transfer of no more than 3 sterile, nonhazardous drugs in the manufacturers’ original containers are involved in the compounding, and no more than 2 entries into any 1 container occur.
5. No more than 1 hour elapses from the time compounding begins to the time of administration to the patient begins. (No intervening steps between compounding and administration should occur.)
6. No batching or storage of CSPs occurs.
7. The preparation is labeled with patient identification, names, and amounts of all ingredients, name or initials of preparer, and exact 1-hour beyond-use date (BUD) and time.

Immunocompromised. Having an immune system with reduced capability to react to pathogens or tissue damage.

Implanted Pump. A catheter surgically placed into a vessel, body cavity, or organ attached to a subcutaneous reservoir that contains a pumping mechanism for continuous medication administration.

Implanted Vascular Access Port. A catheter surgically placed into a vessel, body cavity, or organ attached to a reservoir located under the skin.

Incompatible. Incapable of being mixed or used simultaneously without undergoing chemical or physical changes or producing undesirable effects.

Independent Double Check. A process whereby 2 people working apart from each other verify each component of a work process.

Infection. The presence and growth of a pathogenic microorganism(s) having a local or systematic effect.

Infiltration. Inadvertent administration of a nonvesicant solution or medication into surrounding tissue; rated by a standard tool.

Informed Consent. A person’s voluntary agreement, based upon adequate knowledge and understanding of relevant information, to participate in research or to undergo a diagnostic, therapeutic, or preventive procedure.

Infusate. Parenteral solution administered into the vascular or nonvascular systems; infusion.

Infusion Team. A group of nursing personnel centrally structured within an acute health care facility charged with the shared mission of outcome accountability for the delivery of infusion therapy. While this team may not be directly providing each infusion, they provide the advanced knowledge for safe practices to support the primary care staff. Thus the roles of infusion team members include direct care providers, educators, consultants, coaches, mentors, advocates, coordinators, and managers. This team is led by infu-
sion nurse specialists (eg, CRNI®s) and may contain a staff mix of registered nurses, licensed practical nurses, and unlicensed assistive personnel. Unlicensed team members work under the direction of the licensed professional infusion nursing staff. (See Appendix A).

Instill/Instillation. Administration of a solution or medication into a vascular access device (VAD) intended to fill the VAD rather than systemic infusion; examples include locking solutions to maintain catheter patency, thrombolytic medications, and medications/solutions used to dissolve precipitate.

Interprofessional/Interprofessional Collaboration. A cooperative approach to patient care that depends upon the overlapping knowledge, skills, and abilities of each professional health team member.

Intraosseous (IO). The spongy, cancellous bone of the epiphysis and the medullary cavity of the diaphysis, which are connected; the vessels of the IO space connect to the central circulation by a series of longitudinal canals that contain an artery and a vein; the Volkmann’s canals connect the IO vasculature with the major arteries and veins of the central circulation.

Intrathecal. Within the brain or spinal canal in the space under the arachnoid membrane.

Intraventricular Access Device. An access device consisting of a reservoir (or port) that is attached to a catheter placed in a lateral ventricle of the brain. Used for aspiration of cerebrospinal fluid (CSF) or to deliver medications into the CSF.

Intrinsic Contamination. Contamination that occurs during the manufacturing process of a product.

Irritant. An agent capable of producing discomfort (eg, burning, stinging) or pain as a result of irritation in the internal lumen of the vein with or without immediate external signs of vein inflammation.

Isotonic. Having the same osmotic concentration as the solution with which it is compared (eg, plasma).

Joint Stabilization. The practice of using a device to support and stabilize a joint when veins or arteries in or near that joint must be used for VAD placement; should not be considered as a physical restraint.

Just Culture. A model of shared accountability in health care based on the premise that organizations are accountable for the systems they design and for how they respond to staff behaviors fairly and justly; a just culture understands that individuals should not be held responsible for system failure.

Laminar Flow Hood. A contained workstation with filtered air flow; assists in preventing bacterial contamination and collection of hazardous chemical fumes in the work area.

Latex Safe Environment. A health care setting in which all products containing natural rubber latex intended for contact with mucosa or nonintact skin are removed or covered. The goal is to prevent contact between high-allergen and airborne latex with allergic individuals or those at risk for developing allergies. Dry, molded, or extruded rubber, such as medical vial stoppers and syringe plungers, create less risk of allergen exposure than those items formed by dipping forms in liquid latex (eg, gloves).

Lean Six Sigma. Refers to the 8 types of waste that organizations strive to eliminate as “DOWNTIME” (“defects, overproduction, waiting, nonutilized talent, transportation, inventory, motion, and extra processing”); resources that do not create value are wasteful and should be eliminated.

Licensed Independent Practitioner (LIP). A practitioner permitted by law and by the organization to provide care and services, without direction or supervision, within the scope of the practitioner license and consistent with individually assigned clinical responsibilities.

Locking. The instillation of a solution into a vascular access device (VAD) used to maintain patency in between VAD use and/or reduce risk of catheter-related bloodstream infection (CR-BSI).

Long-term. Referring to vascular access devices placed for anticipated need of greater than 1 month.

Lumen. The interior space of a tubular structure, such as a blood vessel or catheter.

Medical Waste (Regulated). Refers to the 8 types of waste that organizations strive to eliminate as “DOWNTIME” (“defects, overproduction, waiting, nonutilized talent, transportation, inventory, motion, and extra processing”); resources that do not create value are wasteful and should be eliminated.

Medical Adhesive-Related Skin Injury (MARSI). Redness, tears, or erosion of the skin, or development of vesicles or bulla in an area exposed to medical adhesive and lasting for 30 minutes or more following adhesive removal.

Mechanical Infusion Device. A device that uses a non-electronic method to regulate infusion flow rate; examples include the elastomeric balloon device and the spring-coil piston syringe device.

Mechanical Infusion Device. A device that uses a non-electronic method to regulate infusion flow rate; examples include the elastomeric balloon device and the spring-coil piston syringe device.

Medical Waste (Regulated). Includes contaminated sharps; liquid or semiliquid blood or other potentially infectious materials; contaminated items that would
release blood or other potentially infectious material in a liquid or semiliquid state if compressed; items that are caked with dried blood or other potentially infectious materials and are capable of releasing these materials during handling; and microbiological wastes containing blood or other potentially infectious materials.

Medication Reconciliation. The process of collecting and documenting complete and accurate medication information for each patient, including all medications—prescribed, over-the-counter, and herbas/nutritional supplements—that the patient is currently taking.

Microaggregate Blood Filter. Filter that removes microaggregates (includes platelets, leukocytes, and fibrin that are present in stored blood) and reduces the occurrence of nonhemolytic febrile reactions.

Micron (μ). A unit of length equal to 1 millionth of a meter, or 1 thousandth of a millimeter.

Microorganism. Extremely small living body not perceptible to the naked eye.

Mid-arm Circumference. Measurement of upper arm at a predetermined distance above the insertion site of a peripherally inserted central catheter (PICC) or mid-line catheter.

Midline Catheter. A catheter inserted into the upper arm via the basilic, cephalic, or brachial vein, with the internal tip located level at or near the level of the axilla and distal to the shoulder.

Milliosmoses (mOsm). One thousandth of an osmole; osmotic pressure equal to 1 thousandth of the molecular weight of a substance divided by the number of ions that the substance forms in a liter of solution.

Minimum Inhibitory Concentration (MIC). The lowest concentration of a drug that will inhibit bacterial growth.

Moderate Sedation. Drug-induced depression of consciousness in which a patient is able to persistently respond to verbal commands or light tactile stimulation; interventions are not needed to maintain a patent airway, and the cardiorespiratory functions are sufficient and also usually preserved.

Multidrug-Resistant Organism (MDRO). A microorganism, predominantly bacteria, resistant to 1 or more classes of antimicrobial agents. MDROs include, but are not limited to, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and certain gram-negative bacilli (GNB) that have important infection control implications.

Near-Infrared Light Devices. A device using near-infrared light, a range of 700 to 1000 nanometers on the electromagnetic spectrum; works by either transilluminating the extremity and projecting the vessel image to a screen or by capturing an image of the superficial veins and reflecting it to the skin surface.

Needleless Connector (NC). A device that allows intermittent access to a vascular access device with an administration set or syringe without the use of needles; types are categorized by description (ie, simple or complex) and function (ie, negative, positive, or neutral) upon set or syringe disconnection.

Anti-Reflux NC. Contains a pressure-sensitive internal mechanism designed to prevent blood reflux into the catheter lumen when the flow of infusion solution has stopped.

Neutral NC. Contains an internal mechanism designed to prevent blood reflux into the catheter lumen upon connection or disconnection.

Negative Displacement NC. Allows blood reflux into vascular access device (VAD) lumen upon disconnection due to movement of valve mechanism or removal of syringe/set.

Positive Displacement NC. Allows a small amount of fluid to be held in the device; upon set or syringe disconnection, this fluid is pushed through the catheter lumen to clear any blood that refluxed into the lumen.

Simple NC. Allows a straight fluid pathway through the center lumen without any internal mechanism to control flow; example is a prepierced septum accessed with either a blunt cannula or male luer device; eg, split septum.

Needleless Systems. A device that does not use needles for (1) the collection of bodily fluids or withdrawal of body fluids after initial venous or arterial access is established; (2) the administration of medication or solutions; or (3) any other procedure involving the potential for occupational exposure to blood-borne pathogens due to percutaneous injuries from contaminated sharps.

Neonate. Pertaining to the first 4 weeks of life.

Noncritical Equipment. Items that come in contact with intact skin but not mucous membranes.

Nonpermeable. Prevents passage of fluid or gases.

Nontunneled Central Venous Access Device. A vascular or nonvascular access device inserted by puncture directly through the skin and the intended location without a portion of the device allowed to remain in a subcutaneous tract.

Nonvesicant. Solutions and medications that do not produce tissue damage when inadvertently delivered into subcutaneous tissue.

Nurse Practice Act. Legislation that defines the practice of registered nurses and licensed practical or vocational nurses within each state.
Nursing Diagnosis. The patient problem identified for intervention by analysis of assessment findings in comparison to what is considered to be normal.

Nursing Intervention. In the nursing process, the step after planning; involves aspects of actual caring for the patient and requires full knowledge of assessment and planning stages of the nursing process.

Nursing Process. An orderly, logical approach to administering nursing care so that the patient's needs for such care are met comprehensively and effectively; includes steps of assessment, problem identification, outcome identification, planning, intervention, and evaluation.

O

Oclusion. The state of being occluded; the inability to infuse or inject solution into a catheter; the inability to aspirate blood from a catheter or both.

Off-Label Use (Extra-Label Use). The use of an approved drug in the treatment of a condition or for a purpose for which it has not been approved or cleared for use by the US Food and Drug Administration (FDA).

Older Adult. Greater than 65 years of age, as defined by the American Geriatric Society.

Osmolality. The characteristic of a solution determined by the ionic concentration of the dissolved substances per unit of solvent; measured in milliosmoles per liter.

Osmolarity. The number of osmotically active particles in a solution.

P

Palpable Cord. A vein that is rigid and hard to the touch.

Palpation. Examination by application of the hands or fingers to the surface of the body in order to detect evidence of disease or abnormalities in the various organs; also used to determine location of peripheral superficial veins and their condition.

Parenteral. Administered by any route other than the alimentary canal, such as the intravenous, subcutaneous, intramuscular, or mucosal route.

Parenteral Nutrition. The intravenous provision of total nutritional needs for a patient who is unable to take appropriate amounts of food enterally; typical components include carbohydrates, proteins, and/or fats, as well as additives such as electrolytes, vitamins, and trace elements.

Paresthesia. Pain associated with nerve injury including tingling, prickling, or shock-like sensations.

Particulate Matter. Unwanted matter relating to or composed of fine particles found in intravenous medication and solutions, including undissolved drugs or precipitate, rubber cores, glass particles, and plastic pieces.

Pathogen. A microorganism or substance capable of producing disease.

Patient Care Setting. Where patient care is provided; may include hospital, outpatient, or physician office setting, skilled nursing facility, assisted living facility, and the home.

Pediatric. Newborn to 21 years of age. (Note: the American Academy of Pediatrics states that pediatrics is actually the fetal period to 21 years of age.)

Percutaneous. Technique performed through the skin.

Peripheral. Pertaining to or situated at or near the periphery; situated away from a center or central structure.

Peripherally Inserted Central Catheter (PICC). A catheter inserted through veins of the upper extremity or neck in adults and children; for infants, may be inserted through veins of the scalp or lower extremity; catheter tip is located in the superior or inferior vena cava, preferably at its junction with the right atrium, regardless of insertion site.

Personal Protective Equipment (PPE). The equipment worn to minimize exposure to a variety of hazards, including blood-borne pathogens; examples of PPE include items such as gloves, eye protection, gown, and face mask.

pH. The degree of acidity or alkalinity of a substance.

Phlebitis. Inflammation of a vein; may be accompanied by pain, erythema, edema, streak formation, and/or palpable cord; rated by a standard scale.

Phlebotomy. Withdrawal of blood from a vein by direct venipuncture or via a central vascular access device (CVAD).

Physical Restraint. Physical, mechanical, or manual device that immobilizes or decreases the ability of the patient to move arms, legs, body, or head freely.

Pinch-off Syndrome. A relatively rare but significant and often unrecognized complication; occurs when the central vascular access device (CVAD) enters the costoclavicular space medial to the subclavian vein and is positioned outside the lumen of the subclavian vein in the narrow area bounded by the clavicle, first rib, and costoclavicular ligament. Catheter compression causes intermittent or permanent catheter occlusion and, because of the “scissoring” effect of catheter compression between the bones, can result in catheter tearing, transection, and catheter embolism.

Policy. Written, nonnegotiable statement(s) that establish rules guiding the organization in the delivery of patient care.

Pounds per Square Inch (psi). A measurement of pressure; 1 psi equals 50 mm Hg or 68 cm H2O.

Power Injectable. A device (eg, vascular access device [VAD], extension set) capable of withstanding injection pressure used for radiology procedures, usually 300 to 325 pounds per square inch (psi).
Risk Management. Process that centers on identification, analysis, treatment, and evaluation of real and potential hazards.

Preanalytic Phase. The period of time before a body fluid specimen reaches the laboratory; includes obtaining, labeling, and transporting the specimen to the laboratory.

Precipitation. The act or process of a substance or drug in solution to settle in solid particles; most commonly caused by a change in pH.

Preservative-Free. Contains no added substance capable of inhibiting bacterial growth. Free of any additive intended to extend the content, stability, or sterility of active ingredients, such as antioxidants, emulsifiers, or bacteriocides.

Priming Volume. Amount of fluid required to fill the fluid pathway of the vascular access device (VAD), any add-on devices, and administration set.

Procedure. Written statement of a series of steps required to complete an action.

Process. Actual performance and observation of performance based on compliance with policies, procedures, and professional standards.

Product Integrity. The condition of an intact, uncompromised product suitable for intended use.

Proximal. Closest to the center or midline of the body or trunk, nearer to the point of attachment; the opposite of distal.

Psychomotor. Characterizing behaviors that place primary emphasis on the various degrees of physical skills and dexterity as they relate to the preceding thought process.

Pulsatile Flushing Technique. Repetitive injection of short (eg, 1 mL) pushes followed by a brief pause for the purpose of creating turbulence within the vascular access device (VAD) lumen.

Purulent. Containing or producing pus.

Quality Improvement. An ongoing, systematic process for monitoring, evaluating, and problem solving.

R

Radiopaque. Impenetrable to x-rays or other forms of radiation; detectable by radiographic examination.

Reconstitute. The act of adding diluent to a powder to create a solution.

Risk Management. Process that centers on identification, analysis, treatment, and evaluation of real and potential hazards.

Root Cause Analysis (RCA). The process for identifying basic or causal factors that underlie variation in performance, including the occurrence or possible occurrence of a sentinel event; focuses primarily on systems and processes, not individual performance; identifies potential improvements in processes or systems that would tend to decrease the likelihood of such events in the future, or determines, after analysis, that no such improvement opportunities exist.

Safety-Engineered Device (also known as Sharps with Engineered Sharps Injury Protections). A nonneedle sharp or a needle device used for withdrawing body fluids, accessing a vein or artery, or administering medications or other solutions, with a built-in safety feature or mechanism that effectively reduces the risk of an exposure incident. Used to prevent percutaneous injuries and blood exposure before, during, or after use.

Sentinel Event. See Serious Adverse Event.

Sepsis. The systemic response caused by the presence of infectious microorganisms or their toxins in the bloodstream.

Serious Adverse Event. Any undesirable experience associated with the use of a medical product/medication in a patient; the event is serious and should be reported to the US Food and Drug Administration (FDA) when the patient outcome is death, disability, life threatening, requires initial or prolonged hospitalization, or requires intervention to prevent permanent damage.

Sharps. Objects in the health care setting that can be reasonably anticipated to penetrate the skin and to result in an exposure incident; including, but not limited to, needle devices, scalpels, lancets, broken glass, or broken capillary tubes.

Short-term. When used in reference to a vascular access device, a time frame of less than 1 month.

Site Protection. Method or product used to protect the external vascular access device (VAD), insertion site, and dressing.

Skill Validator. Individual with documented competency in a specific skill who is qualified by training and education to objectively assess the performance of others.

Smart Pump. Electronic infusion device (EID) with an imbedded computer software aimed at reducing drug dosing errors through the presence and use of a drug library.

Standard. Authoritative statement enunciated and promulgated by the profession by which the quality of practice, service, or education can be judged.

Standard Precautions. Guidelines designed to protect workers with occupational exposure to blood-borne pathogens. All blood and body fluids are treated as potentially infectious.

Statistics. The systematic science of collecting, organizing, analyzing, and interpreting numerical data.

Sterile. Free from living organisms.
Stylet. A sharp rigid metal hollow-bore object within a peripheral catheter designed to facilitate venipuncture and catheter insertion.

Stylet Wire. A long wire guide inside the catheter lumen used to provide stiffness for advancement of a vascular access device (VAD) into the vein; may be multiple pieces welded together and is not intended for advancement into the vein alone.

Subcutaneous Infusion. Administration of medications into the tissues beneath the skin.

Surrogate. Also referred to as legally authorized representative; someone who acts on behalf of the patient when the patient cannot participate in the decision-making process; surrogates may be designated by the patient and know the patient’s preferences or may be court appointed with or without this knowledge; without such knowledge a surrogate is required to make decisions that are in the patient’s best interest.

Surveillance. Active, systematic, ongoing observation of the occurrence and distribution of disease within a population and of the events or conditions that increase or decrease the risk of such disease occurrence.

Tamper-Proof. Unable to be altered.

Therapeutic Phlebotomy. Removal of a specific volume of blood from a patient as ordered by the licensed independent practitioner (LIP) for the treatment of a specific condition or disease.

Thrombolytic Agent. A pharmacological agent capable of lysing blood clots.

Thrombophlebitis. Inflammation of the vein in conjunction with formation of a blood clot (thrombus).

Thrombosis. The formation, development, or existence of a blood clot within the vascular system.

Transducer. A device that converts one form of energy to another.

Transfusion Reaction. Complication of blood transfusion where there is an immune response against the transfused blood cells or other components of the transfusion.

Transillumination. Shining a light at a specific body part (ie, extremity) to identify structures beneath the skin.

Transmission-Based Precautions. The use of Airborne, Droplet, and/or Contact Precautions, which are implemented in addition to Standard Precautions when strategies beyond Standard Precautions are required to reduce the risk for transmission of infectious agents.

Transparent Semipermeable Membrane (TSM). A sterile air-permeable dressing that allows visual inspection of the skin surface beneath it; water resistant.

Tunneled Cuffed Catheter. A central vascular access device (CVAD) with a segment of the catheter lying in a subcutaneous tunnel with the presence of a cuff into which the subcutaneous tissue grows to offer security for the catheter; indicates that the skin exit site and vein entry site are separated by the subcutaneous tunnel.

Ultrasound. A device using sound waves at frequencies greater than the limit of human hearing; sound waves directed into human tissue to identify and display physical structures on a screen.

Umbilical Catheter. A catheter that is inserted into 1 of the 2 arteries or vein of the umbilical cord.

Unlicensed Assistive Personnel (UAP). A category of health care workers who work as assistants to and under the direction of licensed health care professionals, including both nursing and medical assistants.

Unusual Occurrence (or Event). An unexpected occurrence or event resulting in death, life-threatening, or serious injury to a patient that is not related to a natural course of the patient’s illness or underlying condition. An unusual occurrence also includes an incident resulting in the abuse of a patient.

USP Chapter <797>. Chapter 797 “Pharmaceutical compounding—sterile preparations,” in the United States Pharmacopeia (USP) National Formulary (NF) are enforceable sterile compounding standards issued by the USP that describe the guidelines, procedures, and compliance requirements for compounding sterile preparations and set the standards that apply to all settings in which sterile preparations are compounded.

Vascular Access Device (VAD). Catheters, tubes, or devices inserted into the vascular system, including veins, arteries, and bone marrow.

Vesicant. An agent capable of causing tissue damage when it escapes from the intended vascular pathway into surrounding tissue.

Visible Light Devices. A device using light from 400 to 700 nanometers, or the middle of the electromagnetic spectrum, to transilluminate an extremity to locate superficial veins.

Visualization Technology. Device that employs the use of sound or light waves to allow for the location and identification of blood vessels.
Index

A
Add-on devices, S71
 needleless connectors, S68
Administration set changes, S84
Advanced Practice Registered Nurse (APRN), S14
Adverse events, S31
Airborne Precautions, S42
Air embolism, S108
Analgesia, S63
 intravenous infusion for, S137
 patient-controlled, S131
Anesthesia. See Local anesthesia
Antimicrobial locking solutions, S58, S78, S79, S107
Antineoplastic therapy, S127
Antiseptic agents, S65
Apheresis catheters, S62
 flushing and locking, S78
Arterial catheters
 flushing and locking, S78
 peripheral or pulmonary, S53
 removal, S93
 site preparation and device placement, S66
 site selection, S55
Arterial pressure monitoring: administration set changes and, S85
Assent, S12, S27

B
Bar-code technology, S22, S34, S128, S129, S136
Biologic therapy, S129
Blood and blood components
 administration set changes, S85
 transfusion, S135
 warming, S49
Blood sampling, S85

C
Catheter damage, S109
Catheter embolism, S110
Catheter exchange, S110
Catheter-related bloodstream infection (CRBSI)
 administration set changes and, S84
 adverse events and, S21
 antimicrobial locking solutions and, S58, S79
 blood sampling and, S86, S87
 catheter damage and, S108
 catheter exchange and, S110
 central vascular access devices and, S47
 chlorhexidine-impregnated dressings and, S82
 CVAD removal and, S107
 CVAD salvage and, S106
 disinfection caps and, S69
 identifying, S17
 intermittent vascular access ports and, S52
 monitoring rates of, S22
 nontunneled CVAD removal and, S91
 parenteral nutrition and, S134
 short peripheral and midline catheter removal and, S91
 sterile glove, aseptic technique and, S65
 sutures and, S73
 umbilical catheters and, S61
 vascular access devices and, S77
 venous thrombosis and, S113
Catheter repair, S110
Central line-associated bloodstream infection (CLABSI)
 antimicrobial locking solutions and, S79
 central vascular access devices and, S52
 chlorhexidine-impregnated dressings and, S82
 disinfection caps and, S69
 needleless connectors and, S69
 phlebotomy and, S86
 rate calculation, S21
 tip location and, S47
Central vascular access
 flushing and locking, S77
 planning, S52
 removal, S92
 site preparation and device placement, S65
 tip location, S46
Central vascular access devices
 hemodialysis vascular access, S59
 implanted ports, S52, S55, S57, S58, S92
 nontunneled, S52, S55, S91
 peripherally inserted central catheters, S55
 tunneled, S52, S55, S92
Central venous access device-associated thrombosis, S112
Central venous access device malposition, S114
Certification, S14
Color coding, S34
Competency assessment and validation, S18
Complications
 air embolism, S108
catheter damage, S109
catheter embolism, S110
e extravasation, S98
infection, S106
infiltration, S98
malposition, S114
nerve injuries, S102
occlusion, S104
phlebitis, S95
venous thrombosis, S112
Compounding, S39, S127, S133
Contact Precautions, S42

D
Defect reporting, S32
Disinfection
 durable medical equipment, S43
 needleless connectors, S68
Disinfection caps, S69
Documentation, S28
 adverse and serious adverse events, S31
 in medical record, S28
 medication verification, S34
 product evaluation, integrity, and defect reporting, S32
Dose-error reduction system, S34, S48, S129, S131, S134
Dressing changes, S81
Droplet Precautions, S42
Durable medical equipment disinfection, S43

E
Electronic infusion devices (EID), S48
 flow control device, S49
Engineered stabilization device, S72, S82
Epidural access devices, S118
Evidence-based practice and research, S24
External jugular vein access, S56
Extravasation, S98

F
Filtration, S70
 blood and blood components, S136
 intravenous infusions, S119
 parenteral nutrition, S133
Flow-control devices, S43, S48
 manual, S72
Fluid warming, S49
Flushing, S77

H
Hand hygiene, S38
Hazardous drugs and waste, S36
Hemodialysis vascular access devices, S59
 flushing and locking, S78
Hemodynamic pressure monitoring: administration set
 changes and, S85
Heparin-induced thrombocytopenia, S78

I
Implanted vascular access ports
 placement, S58
 planning, S52
 removal, S92
 site selection, S55
Infection
 prevention and control
 durable medical equipment disinfection, S43
 hand hygiene, S38
 medical waste and sharps safety, S40
 parenteral solutions and medications compounding and preparation, S39
 Standard Precautions, S41
 Transmission-based Precautions, S42
 vascular access device-related, S106
Infiltration, S98
 rate calculation, S21
Informed consent, S26
 assent, S12, S27
Infusion Nurse Specialist (CRNI®), S14
Infusion team, S17, S140
Intraosseous access devices, S120
Intraspinal access devices, S118
Intrathecal access devices, S118

J
Joint stabilization devices, S74

L
Latex sensitivity or allergy, S35
Licensed Practical/Vocational Nurse (LPN/LVN), S14
Light devices, S44
Local anesthesia, S63
Locking, S77

M
Medical adhesive-related skin injury, S73, S82
Medical Assistants (MAs), S14
Medical waste, S40
Medications
 beyond-use date, S40
 compounding, S39, S127, S133
 verification, S34
Midline catheters
 flushing and locking, S78
planning, S52
removal, S91
site preparation and device placement, S64
site selection, S54
Moderate sedation/analgesia, S137
Multidrug-resistant organisms, S41, S42, S43

N
Near-infrared light devices, S44
Needleless connectors, S68
Neonatal patients, S11
Nerve injuries, S102
Nontunneled central vascular access devices
flushing and locking, S78
planning, S52
removal, S91
site preparation and device placement, S65
site selection, S55
Nursing assistive personnel (NAP), S14
Nursing practice standards
competency assessment and validation, S18
documentation in medical record, S28
evidence-based practice and research, S23
informed consent, S26
infusion team structure, S17
patient care, S11
patient education, S25
quality improvement, S21
scope of practice, S13
special populations, S11

O
Occlusion: central vascular access devices, S104
Older adult patients, S11

P
Paramedics, S15
Parenteral nutrition, S133
administration set changes, S85
Parenteral solutions and medications
administration, S125
administration set changes, S85
compounding and preparation, S39
Patient care standards, S11
Patient-controlled analgesia, S131
Patient education, S25
Pediatric patients, S11
Peripheral arterial catheters, S53
flushing and locking, S78
planning, S52
removal, S91
site preparation and device placement, S65
site selection, S55
Phlebitis, S95
rate calculation, S22

Phlebotomy, S85
blood sampling via direct venipuncture, S86
blood sampling via vascular access devices, S87
therapeutic, S138
Pinch-off syndrome, S77, S104-S105, S110, S149
Practice setting, S11
Pregnant patients, S11
Product evaluation, integrity, and defect reporting, S32
Propofol infusions: administration set changes, S85
Pulmonary arterial catheters, S53

Q
Quality improvement, S21

R
Radiologic Technologist, S15
Registered Nurse (RN), S13
Removal, vascular access device
arterial catheters, S93
nontunneled central vascular access devices, S92
short peripheral and midline catheters, S91
surgically placed central vascular access devices, S92
Respiratory Care Practitioner, S15

S
Safety
adverse and serious adverse events, S31
durable medical equipment disinfection, S43
hazardous drugs and waste, S36
latex sensitivity or allergy, S35
medical waste and sharps, S40
medication verification, S34
product evaluation, integrity, and defect reporting, S32
Standard Precautions, S41
Transmission-based Precautions, S42
Scope of practice, S13
Sedation, intravenous infusion for, S137
Sentinel events, S31
Serious adverse events, S31
Sharps safety, S40
Short peripheral catheters
flushing and locking, S40
planning, S51
removal, S91
site preparation and device placement, S64
site selection, S54
Site care and dressing changes, S81
Site protection, S75
Site selection, S54
Skin antisepsis, S65
Smart pumps, S34, S48, S125, S128, S129, S134
Stabilization
joint, S74
vascular access devices, S72
Standard Precautions, S41
Subcutaneous infusions
 access devices, S122
 administration set changes, S84

T
Therapeutic phlebotomy, S138
Therapist/Technologist/Technician, S15
Transfusion therapy, S135
 blood warming, S49
Transmission-based Precautions, S42
Tunneled central vascular access devices
 planning, S52
 removal, S92
 site selection, S55

U
Ultrasonography, S45
Umbilical catheters, S60
United States Pharmacopeia (USP) National Formulary (NF), General Chapter < 797 >, S39
Unlicensed Assistive Personnel, S14

V
Vascular access
 administration set changes, S84
 assessment, S81
 complications, S95
 local anesthesia, S63
 planning, S51
 removal, S91
 site preparation and device placement, S64
 site protection, S75
 site selection, S54
 stabilization, S72
Vascular access devices. See Central vascular access devices
 add-on devices, S71
 administration set changes, S84
 anesthesia for placement and access, S63
 apheresis, S62
 assessment, site care, and dressing changes, S81
 blood sampling via, S87
 complications, S95
 filters, S70
 flushing, S77
 for hemodialysis, S59
 joint stabilization devices, S74
 locking, S77
 management, S68
 midline catheters, S52
 needleless connectors, S68
 phlebotomy, S85
 planning, S51
 removal, S91
 short peripheral catheters, S51
 site preparation and device placement, S64
 site protection, S75
 site selection, S54
 stabilization, S72
 types, S51
 umbilical, S60
Vascular visualization, S44
Venipuncture, direct: for blood sampling, S86
Venous thrombosis, S112
Performance Under Pressure

BD Nexiva™ Diffusics™ Closed IV Catheter System
For high-pressure injection

A simple solution when the pressure is on.

Accommodating CT power injection protocols can be challenging when it comes to selecting and using an IV catheter—especially when efficiency and safety are top priorities. You need a catheter that can do double duty.

That’s why the BD Nexiva™ Diffusics™ Closed IV Catheter System was created. Its unique catheter tip features multiple teardrop-shaped holes to diffuse flow and reduce forces that can cause catheter motion in the vein by up to 67%.*

BD Diffusics™ technology enables the use of a smaller IV catheter (22 gauge up to 6.5 mL/sec)* with those patients that require a smaller catheter and may provide a lower cost alternative to more costly IV access options like PICCs. Let’s just say we thrive under pressure.

To order or learn about all the ways BD is caring for you and your patients, visit bd.com/INS2 today or call (888) 237-2762.